一、Sentinel

    目前我们讲的 Redis 还只是主从方案、最终一致性,如果主节点凌晨 3 点突发宕机怎么办?坐等运维从床上爬起来,然后手工进行从主切换,再通知所有的程序把地址统统改一遍重新上线?毫无疑问,这样的人工运维效率太低,事故发生时估计得至少 1 个小时才能缓过来。如果是一个大型公司,这样的事故足以上新闻了。
    所以我们必须有一个高可用方案来抵抗节点故障,当故障发生时可以自动进行从主切换,程序可以不用重启,运维可以继续睡大觉,仿佛什么事也没发生一样。Redis 官方提供了这样一种方案 —— Redis Sentinel(哨兵)
在这里插入图片描述
    我们可以将 Redis Sentinel 集群看成是一个 ZooKeeper 集群,它是集群高可用的心脏,它一般是由 3~5 个节点组成,这样挂了个别节点集群还可以正常运转。
    它负责持续监控主从节点的健康,当主节点挂掉时,自动选择一个最优的从节点切换为主节点。 客户端来连接集群时,会首先连接 sentinel,通过 sentinel 来查询主节点的地址,然后再去连接主节点进行数据交互。当主节点发生故障时,客户端会重新向 sentinel 要地址,sentinel 会将最新的主节点地址告诉客户端。如此应用程序将无需重启即可自动完成节点切换。比如上图的主节点挂掉后,集群将可能自动调整为下图所示结构。
在这里插入图片描述
    从这张图中我们能看到主节点挂掉了,原先的主从复制也断开了,客户端和损坏的主节点也断开了。从节点被提升为新的主节点,其它从节点开始和新的主节点建立复制关系。客户端通过新的主节点继续进行交互。Sentinel 会持续监控已经挂掉了主节点,待它恢复后,集群会调整为下面这张图。
在这里插入图片描述
    此时原先挂掉的主节点现在变成了从节点,从新的主节点那里建立复制关系。

1、消息丢失

    Redis 主从采用异步复制,意味着当主节点挂掉时,从节点可能没有收到全部的同步消息,这部分未同步的消息就丢失了。如果主从延迟特别大,那么丢失的数据就可能会特别多。Sentinel 无法保证消息完全不丢失,但是也尽可能保证消息少丢失。它有两个选项可以限制主从延迟过大。

min-slaves-to-write 1
min-slaves-max-lag 10

    第一个参数表示主节点必须至少有一个从节点在进行正常复制,否则就停止对外写服务,丧失可用性。那 什么是正常复制,什么又是异常复制呢?这个就是由第二个参数控制的,它的单位是 秒,表示如果 10s 没有收到从节点的反馈,就意味着从节点同步不正常,要么网络断开了,要么一直没有给反馈。

2、Sentinel 基本使用
Windows 环境下设置 Redis 主从数据库

    可以先下载个 Redis Desktop Manager 可视化工具。
    先搭建成主从数据库,在Windows上,搭建成一主两从的模式,先复制一份到同一个目录下:
在这里插入图片描述
Redis-master 不用做任何修改操作:
进入 Redis-slave 文件夹,修改 redis.windows.conf 文件,修改端口号为 6380,并添加主从配置标识:
在这里插入图片描述

    在 Redis 安装包下新建两个文件夹 conf 和 logs ,方便管理配置和查看日志。
    先启动 redis-master,然后启动 redis-slave:
在这里插入图片描述
    同样的命令启动 redis-slave:
在这里插入图片描述
    可以看到 master 的地址和端口号,并且开始了第一次全量复制。
    接下来验证一下主从关系。
在 redis-master 中添加一条记录:
在这里插入图片描述
在 redis-slave 查看到了 key为 “aaa” 的 value:
在这里插入图片描述
这样主从模式就搭建成功啦。
接下来搭建一主亮从三哨兵的模式,先需要 redis-master,redis-slave1 和 redis-slave2 三个文件夹:
在这里插入图片描述
先在 redis-master,redis-slave1 以及 redis-slave2 文件夹下面分别创建 sentinel.conf 文件,官方说明见 http://www.redis.cn/topics/sentinel.html

# 这个是Redis6379配置内容,其他文件同理新增然后改一下端口即可,26380,和 26381。
#当前Sentinel服务运行的端口
port 26380
bind 127.0.0.1
#Sentinel监视一个名为mymaster的主服务器,主服务器的IP地址为127.0.0.1,端口号为6379,
#而将这个主服务器判断为失效,至少需要2个Sentinel同意
sentinel myid 401e773d4045def4fae9a09c7578005a64e2e9e6
sentinel deny-scripts-reconfig yes
sentinel monitor mymaster 127.0.0.1 6381 2
sentinel down-after-milliseconds mymaster 3000
sentinel failover-timeout mymaster 10000

(注意:如果用记事本保存,是 txt 格式的噢,可以用 IDEA 存成 CONF 格式:
在这里插入图片描述


依次启动 redis-master,redis-slave1 和 redis-slave2的 redis 服务:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
然后分别启动三个文件夹中的 哨兵服务:redis-server.exe sentinel.conf --sentinel
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
每个哨兵服务都会打印日志,sentinel-conf 文件中会多了些配置,比如 redis-master 的:
在这里插入图片描述
来验证一下,首先 ,关闭 redis-master 服务:
在这里插入图片描述
    当主服务器 master 宕机,那么 Sentinel 会通过选举算法机制,从 Slave 中选出一个作为新 Master 。
查看slave2 :
在这里插入图片描述
    可以看到,slave2 变成 master 啦。而且从 slave2 的 sentinel.conf 中也可以看到:
在这里插入图片描述
    至此,Redis 的主从哨兵模式就搭建并验证完成。
    

二、 Codis

    在 大数据 高并发 场景下,单个 Redis 实例往往会显得捉襟见肘。首先 体现在内存上,单个 Redis 的内存不宜过大,内存太大会导致 rdb 文件过大,进一步导致主从同步时全量同步时间过长,在实例重启恢复时也会消耗很长的数据加载时间,特别是在云环境下,单个实例内存往往都是受限的。其次 体现在 CPU 的利用率上,单个 Redis 实例只能利用单个核心,这单个核心要完成海量数据的存取和管理工作压力会非常大。
    正是在这样的大数据高并发的需求之下,Redis 集群方案应运而生。它可以将众多小内存的 Redis 实例综合起来,将分布在多台机器上的众多 CPU 核心的计算能力聚集到一起,完成海量数据存储和高并发读写操作。
    Codis 是 Redis 集群方案之一,令我们感到骄傲的是,它是中国人开发并开源的,来自前豌豆荚中间件团队。绝大多数国内的开源项目都不怎么靠谱,但是 Codis 非常靠谱。有了 Codis 技术积累之后,项目「突头人」刘奇又开发出来中国人自己的开源分布式数据库 ——TiDB,可以说 6 到飞起。👍 从 Redis 的广泛流行到 RedisCluster 的广泛使用之间相隔了好多年,Codis 就是在这样的市场空缺的机遇下发展出来的。大型公司有明确的 Redis 在线扩容需求,但是市面上没有特别好的中间件可以做到这一点。
     Codis 使用 Go 语言开发,它是一个代理中间件,它和 Redis 一样也使用 Redis 协议对外提供服务,当客户端向 Codis 发送指令时,Codis 负责将指令转发到后面的 Redis 实例来执行,并将返回结果再转回给客户端。Codis 上挂接的所有 Redis 实例构成一个 Redis 集群,当集群空间不足时,可以通过动态增加 Redis 实例来实现扩容需求。客户端操纵 Codis 同操纵 Redis 几乎没有区别,还是可以使用相同的客户端 SDK,不需要任何变化。因为 Codis 是无状态的,它只是一个转发代理中间件,这意味着我们可以启动多个 Codis 实例,供客户端使用,每个 Codis 节点都是对等的。因为单个 Codis 代理能支撑的QPS 比较有限,通过启动多个 Codis 代理可以显著增加整体的 QPS 需求,还能起到容灾功能,挂掉一个 Codis 代理没关系,还有很多 Codis 代理可以继续服务。

1、Codis 分片原理

    Codis 要负责将特定的 key 转发到特定的 Redis 实例,那么这种对应关系 Codis 是如何管理的呢?
    Codis 将所有的 key 默认划分为 1024 个槽位(slot),它首先对客户端传过来的 key 进 行 crc32 运算计算哈希值,再将 hash 后的整数值对 1024 这个整数进行取模得到一个余数,这个余数就是对应 key 的槽位。
    每个槽位都会唯一映射到后面的多个 Redis 实例之一,Codis 会在内存维护槽位和 Redis 实例的映射关系。这样有了上面 key 对应的槽位,那么它应该转发到哪个 Redis 实例就很明确了。

hash = crc32(command.key)
slot_index = hash % 1024
redis = slots[slot_index].redis
redis.do(command)

    槽位数量默认是 1024,它是可以配置的,如果集群节点比较多,建议将这个数值配置大一些,比如 2048、4096。
    不同的 Codis 实例之间槽位关系如何同步?
    如果 Codis 的槽位映射关系只存储在内存里,那么不同的 Codis 实例之间的槽位关系就无法得到同步。所以 Codis 还需要一个分布式配置存储数据库专门用来持久化槽位关系。Codis 开始使用的是 ZooKeeper,后来连 etcd 也一块支持了。 Codis 将槽位关系存储在 zk 中,并且提供了一个 Dashboard 可以用来观察和修改槽位关系,当槽位关系变化时,Codis Proxy 会监听到变化并重新同步槽位关系,从而实现多个 Codis Proxy 之间共享相同的槽位关系配置。
    

2、扩容

    刚开始 Codis 后端只有一个 Redis 实例,1024 个槽位全部指向同一个 Redis。然后一个 Redis 实例内存不够了,所以又加了一个 Redis 实例。这时候需要对槽位关系进行调整,将一半的槽位划分到新的节点。这意味着需要对这一半的槽位对应的所有 key 进行迁移,迁移到新的 Redis 实例。
    那 Codis 如果找到槽位对应的所有 key 呢?
    Codis 对 Redis 进行了改造,增加了 SLOTSSCAN 指令,可以遍历指定 slot 下所有的 key。Codis 通过 SLOTSSCAN 扫描出待迁移槽位的所有的 key,然后挨个迁移每个 key 到新的 Redis 节点。在迁移过程中,Codis 还是会接收到新的请求打在当前正在迁移的槽位上,因为当前槽位的数据同时存在于新旧两个槽位中,Codis 如何判断该将请求转发到后面的哪个具体实例呢?
    Codis 无法判定迁移过程中的 key 究竟在哪个实例中,所以它采用了另一种完全不同的思路。当 Codis 接收到位于正在迁移槽位中的 key 后,会立即强制对当前的单个 key 进行迁移,迁移完成后,再将请求转发到新的 Redis 实例。

slot_index = crc32(command.key) % 1024
if slot_index in migrating_slots:
do_migrate_key(command.key) # 强制执行迁移
redis = slots[slot_index].new_redis
else:
redis = slots[slot_index].redis
redis.do(command)

    我们知道 Redis 支持的所有 Scan 指令都是无法避免重复的,同样 Codis 自定义的 SLOTSSCAN 也是一样,但是这并不会影响迁移。因为单个 key 被迁移一次后,在旧实例中它就彻底被删除了,也就不可能会再次被扫描出来了。
    

3、自动均衡

    Redis 新增实例,手工均衡 slots 太繁琐,所以 Codis 提供了自动均衡功能。自动均衡会在系统比较空闲的时候观察每个 Redis 实例对应的 Slots 数量,如果不平衡,就会自动进行迁移。
    

4、Codis 的代价

    Codis 给 Redis 带来了扩容的同时,也损失了其它一些特性。因为 Codis 中所有的 key 分散在不同的 Redis 实例中,所以 事务就不能再支持了,事务只能在单个 Redis 实例中完成。同样 rename 操作也很危险,它的参数是两个 key,如果这两个 key 在不同的 Redis 实例中,rename 操作是无法正确完成的。Codis 的官方文档中给出了一系列不支持的命令列表。
    同样为了支持扩容,单个 key 对应的 value 不宜过大,因为集群的迁移的最小单位是 key,对于一个 hash 结构,它会一次性使用 hgetall 拉取所有的内容,然后使用 hmset 放置到另一个节点。如果 hash 内部的 kv 太多,可能会带来迁移卡顿。官方建议单个集合结构的总字节容量不要超过 1M。如果我们要放置社交关系数据,例如粉丝列表这种,就需要注意了,可以考虑分桶存储,在业务上作折中。
    Codis 因为增加了 Proxy 作为中转层,所有在网络开销上要比单个 Redis 大,毕竟数据包多走了一个网络节点,整体在性能上要比单个 Redis 的性能有所下降。但是这部分性能损耗不是太明显,可以通过增加 Proxy 的数量来弥补性能上的不足。
    Codis 的集群配置中心使用 zk 来实现,意味着在部署上增加了 zk 运维的代价,不过 大部分互联网企业内部都有 zk 集群,可以使用现有的 zk 集群使用即可。
    

5、Codis 的优点

    Codis 在设计上相比 Redis Cluster 官方集群方案要简单很多,因为它将分布式的问题交给了第三方 zk/etcd 去负责,自己就省去了复杂的分布式一致性代码的编写维护工作。而 Redis Cluster 的内部实现非常复杂,它为了实现去中心化,混合使用了复杂的 Raft 和 Gossip 协议,还有大量的需要调优的配置参数,当集群出现故障时,维护人员往往不知道从何处着手。
    

6、MGET 指令的操作过程

    mget 指令用于批量获取多个 key 的值,这些 key 可能会分布在多个 Redis 实例中。
    Codis 的策略是将 key 按照所分配的实例打散分组,然后依次对每个实例调用 mget 方法,最后将结果汇总为一个,再返回给客户端。
    
架构变迁
    Codis 作为非官方 Redis 集群方案,近几年来它的结构一直在不断变化,一方面当官方的 Redis 有变化的时候它要实时去跟进,另一方面它作为 Redis Cluster 的竞争方案之一,它还得持续提高自己的竞争力,给自己增加更多的官方集群所没有的便捷功能。
    比如 Codis 有个特色的地方在于强大的 Dashboard 功能,能够便捷地对 Redis 集群进行管理。这是 Redis 官方所欠缺的。另外 Codis 还开发了一个 Codis-fe(federation 联邦) 工具,可以同时对多个 Codis 集群进行管理。在大型企业,Codis 集群往往会有几十个,有这样一个便捷的联邦工具可以降低不少运维成本。
    
Codis 的尴尬
    Codis 不是 Redis 官方项目,这意味着它的命运会无比曲折,它总是要被官方 Redis 牵着牛鼻子走。当 Redis 官方提供了什么功能它欠缺时,Codis 就会感到恐惧,害怕自己被市场甩掉,所以必须实时保持跟进。同时因为 Codis 总是要比 Redis 官方慢一拍,Redis 官方提供的最新功能,Codis 往往
要等很久才能同步。比如现在 Redis 已经进入到 4.0 阶段,提供了插件化 Redis-Module 支持,目前 Codis 还没有提供解决方案。
    现在 Redis-Cluster 在业界已经逐渐流行起来,Codis 能否持续保持竞争力是个问题,我们看到 Codis 在不断的差异化竞争,竞争的方法就体现在工具上,而不是内核,这个和官方的路线真是相反的,官方对工具无暇顾及,只提供基本的工具,其它完全交给第三方去开发。
    

三、Cluster

    RedisCluster 是 Redis 的亲儿子,它是 Redis 作者自己提供的 Redis 集群化方案。相对于 Codis 的不同,它是去中心化的,如图所示,该集群有三个 Redis 节点组成,每个节点负责整个集群的一部分数据,每个节点负责的数据多少可能不一样。这三个节点相互连接组成一个对等的集群,它们之间通过一种特殊的二进制协议相互交互集群信息。
在这里插入图片描述

    Redis Cluster 将所有数据划分为 16384 的 slots,它比 Codis 的 1024 个槽划分的更为精细,每个节点负责其中一部分槽位。槽位的信息存储于每个节点中,它不像 Codis,它不需要另外的分布式存储来存储节点槽位信息。
当 Redis Cluster 的客户端来连接集群时,它也会得到一份集群的槽位配置信息。这样当客户端要查找某个 key 时,可以直接定位到目标节点。这点不同于 Codis,Codis 需要通过 Proxy 来定位目标节点,RedisCluster 是直接定位。客户端为了可以直接定位某个具体的 key 所在的节点,它就需要缓存槽位相关信息,这样才可以准确快速地定位到相应的节点。同时因为槽位的信息可能会存在客户端与服务器不
一致的情况,还需要纠正机制来实现槽位信息的校验调整。
    另外,RedisCluster 的每个节点会将集群的配置信息持久化到配置文件中,所以必须确保配置文件是可写的,而且尽量不要依靠人工修改配置文件。
    Cluster 默认会对 key 值使用 crc32 算法进行 hash 得到一个整数值,然后用这个整数值对 16384 进行取模来得到具体槽位。Cluster 还允许用户强制某个 key 挂在特定槽位上,通过在 key 字符串里面嵌入 tag 标记,这就可以强制 key 所挂在的槽位等于 tag 所在的槽位。
    

  • 跳转
        当客户端向一个错误的节点发出了指令,该节点会发现指令的 key 所在的槽位并不归自己管理,这时它会向客户端发送一个特殊的跳转指令携带目标操作的节点地址,告诉客户端去连这个节点去获取数据。
GET x
-MOVED 3999 127.0.0.1:6381

    MOVED 指令的第一个参数 3999 是 key 对应的槽位编号,后面是目标节点地址。MOVED 指令前面有一个减号,表示该指令是一个错误消息。客户端收到 MOVED 指令后,要立即纠正本地的槽位映射表。后续所有 key 将使用新的槽位映射表。

  • 迁移
        Redis Cluster 提供了工具 redis-trib 可以让运维人员手动调整槽位的分配情况,它使用 Ruby 语言进行开发,通过组合各种原生的 Redis Cluster 指令来实现。这点 Codis 做的更加人性化,它不但提供了 UI 界面可以让我们方便的迁移,还提供了自动化平衡槽位工具,无需人工干预就可以均衡集群负载。不过 Redis 官方向来的策略就是提供最小可用的工具,其它都交由社区完成。
        Redis 迁移的单位是槽,Redis 一个槽一个槽进行迁移,当一个槽正在迁移时,这个槽就处于中间过渡状态。这个槽在原节点的状态为 migrating,在目标节点的状态为 importing,表示数据正在从源流向目标。
        迁移工具 redis-trib 首先会在源和目标节点设置好中间过渡状态,然后一次性获取源节点槽位的所有 key 列表 (keysinslot 指令,可以部分获取),再挨个 key 进行迁移。每个 key 的迁移过程是以原节点作为目标节点的「客户端」,原节点对当前的 key 执行 dump 指令得到序列化内容,然后通过「客户端」向目标节点发送指令 restore 携带序列化的内容作为参数,目标节点再进行反序列化就可以将内容恢复到目标节点的内存中,然后返回「客户端」。OK,原节点「客户端」收到后再把当前节点的 key 删除掉就完成了单个 key 迁移的整个过
    程。
    从源节点获取内容 => 存到目标节点 => 从源节点删除内容。
        注意这里的迁移过程是同步的,在目标节点执行 restore 指令到原节点删除 key 之间,原节点的主线程会处于阻塞状态,直到 key 被成功删除。如果迁移过程中突然出现网络故障,整个 slot 的迁移只进行了一半。这时两个节点依旧处于中间过渡状态。待下次迁移工具重新连上时,会提示用户继续进行迁移。在迁移过程中,如果每个 key 的内容都很小,migrate 指令执行会很快,它就并不会影响客户端的正常访问。如果 key 的内容很大,因为 migrate 指令是阻塞指令会同时导致原节点和目标节点卡顿,影响集群的稳定型。所以在集群环境下业务逻辑要尽可能避免大 key 的产生。
        在迁移过程中,客户端访问的流程会有很大的变化。
        首先新旧两个节点对应的槽位都存在部分 key 数据。客户端先尝试访问旧节点,如果对应的数据还在旧节点里面,那么旧节点正常处理。如果对应的数据不在旧节点里面,那么有两种可能,要么该数据在新节点里,要么根本就不存在。旧节点不知道是哪种情况,所以它会向客户端返回一个-ASK targetNodeAddr 的重定向指令。客户端收到这个重定向指令后,先去目标节点执行一个不带任何参数的 asking 指令,然后在目标节点再重新执行原先的操作指令。
        为什么需要执行一个不带参数的 asking 指令呢?
        因为在迁移没有完成之前,按理说这个槽位还是不归新节点管理的,如果这个时候向目标节点发送该槽位的指令,节点是不认的,它会向客户端返回一个-MOVED 重定向指令告诉它去源节点去执行。如此就会形成 重定向循环。asking 指令的目标就是打开目标节点的选项,告诉它下一条指令不能不理,而要当成自己的槽位来处理。
        从以上过程可以看出,迁移是会影响服务效率的,同样的指令在正常情况下一个 ttl 就能完成,而在迁移中得 3 个 ttl 才能搞定。
        
  • 容错
        Redis Cluster 可以为每个主节点设置若干个从节点,单主节点故障时,集群会自动将其中某个从节点提升为主节点。如果某个主节点没有从节点,那么当它发生故障时,集群将完全处于不可用状态。不过 Redis 也提供了一个参数 cluster-require-full-coverage 可以允许部分节点故障,其它节点还可以继续提供对外访问。
        
  • 网络抖动
        真实世界的机房网络往往并不是风平浪静的,它们经常会发生各种各样的小问题。比如网络抖动就是非常常见的一种现象,突然之间部分连接变得不可访问,然后很快又恢复正常。
        为解决这种问题,Redis Cluster 提供了一种选项 cluster-node-timeout,表示当某个节点持续 timeout 的时间失联时,才可以认定该节点出现故障,需要进行主从切换。如果没有这个选项,网络抖动会导致主从频繁切换 (数据的重新复制)。
        还有另外一个选项 cluster-slave-validity-factor 作为倍乘系数来放大这个超时时间来宽松容错的紧急程度。如果这个系数为零,那么主从切换是不会抗拒网络抖动的。如果这个系数大于 1,它就成了主从切换的松弛系数。
        
  • 可能下线 (PFAIL-Possibly Fail) 与确定下线 (Fail)
        因为 Redis Cluster 是去中心化的,一个节点认为某个节点失联了并不代表所有的节点都认为它失联了。所以集群还得经过一次协商的过程,只有当大多数节点都认定了某个节点失联了,集群才认为该节点需要进行主从切换来容错。
        Redis 集群节点采用 Gossip 协议来广播自己的状态以及自己对整个集群认知的改变。比如一个节点发现某个节点失联了 (PFail),它会将这条信息向整个集群广播,其它节点也就可以收到这点失联信息。如果一个节点收到了某个节点失联的数量 (PFail Count) 已经达到了集群的大多数,就可以标记该节点为确定下线状态 (Fail),然后向整个集群广播,强迫其它节点也接收该节点已经下线的事实,并立即对该失联节点进行主从切换。
GitHub 加速计划 / sentine / Sentinel
19
6
下载
alibaba/Sentinel: Sentinel 是阿里巴巴开源的一款面向分布式服务架构的流量控制、熔断降级组件,提供实时监控、限流、降级和系统保护功能,适用于微服务治理场景。
最近提交(Master分支:4 个月前 )
195150bc * fix issue 2485 which occur oom when using async servlet request. * optimize imports * 1. fix the same issue in the webmvc-v6x 2. improve based on review comments 3 个月前
b78b09d3 3 个月前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐