Linux 进程中 Stop, Park, Freeze
http://kernel.meizu.com/linux-process-stop.html
在调试内核的时候,经常会碰到几个相近的概念:进程 stop、进程 park、进程 freeze。这几个名词看起来都是停止进程,那么他们之间的区别和应用场景在分别是什么呢?下面就来分析一番。
本文的代码分析基于 Linux kernel 3.18.22,最好的学习方法还是 “RTFSC”
1. 进程 stop
进程 stop 分成两种:用户进程 stop 和内核进程 stop。
用户进程 stop 可以通过给进程发送 STOP 信号来实现,可以参考“Linux Signal”这一篇的描述。但是对内核进程来说不会响应信号,如果碰到需要 stop 内核进程的场景怎么处理?比如:我们在设备打开的时候创建了内核处理进程,在设备关闭的时候需要 stop 内核进程。
Linux 实现了一套 kthread_stop()
的机制来实现内核进程 stop。
1.1 内核进程的创建
内核进程创建过程,是理解本篇的基础。
可以看到 kthread_create()
并不是自己去创建内核进程,而是把创建任务推送给 kthreadd()
进程执行。
kthreadd()
-> create_kthread()
-> kernel_thread()
创建的新进程也不是直接使用用户的函数 threadfn()
,而是创建通用函数 kthread()
,kthread()
再来调用 threadfn()
。
- kernel/kthread.c:
1.2 内核进程的 stop
如果内核进程需要支持 kthread_stop()
,需要根据以下框架来写代码。用户在主循环中调用 kthread_should_stop()
来判断当前 kthread 是否需要 stop,如果被 stop 则退出循环。
这种代码为什么不做到通用代码 kthread()
中?这应该是和 Linux 的设计思想相关的。Linux 运行内核态的策略比较灵活,而对用户态的策略更加严格统一。
kthread_should_stop()
和 kthread_stop()
的代码实现:
- kernel/kthread.c:
-
kthread_should_stop()
/kthread_stop()
bool kthread_should_stop(void)
{
// (1) 判断进程所在 kthread 结构中的 KTHREAD_SHOULD_STOP 是否被置位
return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
}
int kthread_stop(struct task_struct *k)
{
struct kthread *kthread;
int ret;
trace_sched_kthread_stop(k);
get_task_struct(k);
kthread = to_live_kthread(k);
if (kthread) {
// (2) 置位进程所在 kthread 结构中的 KTHREAD_SHOULD_STOP
set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
// (3) unpark & wake_up 进程来响应 stop 信号
__kthread_unpark(k, kthread);
wake_up_process(k);
wait_for_completion(&kthread->exited);
}
ret = k->exit_code;
put_task_struct(k);
trace_sched_kthread_stop_ret(ret);
return ret;
}
2. 进程 park
smpboot_register_percpu_thread()
用来创建 per_cpu 内核进程,所谓的 per_cpu 进程是指需要在每个 online cpu 上创建线程。比如执行 stop_machine()
中 cpu 同步操作的 migration 进程:
shell@:/ $ ps | grep migration
root 10 2 0 0 smpboot_th 0000000000 S migration/0
root 11 2 0 0 smpboot_th 0000000000 S migration/1
root 15 2 0 0 __kthread_ 0000000000 R migration/2
root 19 2 0 0 __kthread_ 0000000000 R migration/3
root 207 2 0 0 __kthread_ 0000000000 R migration/8
root 247 2 0 0 __kthread_ 0000000000 R migration/4
root 251 2 0 0 __kthread_ 0000000000 R migration/5
root 265 2 0 0 __kthread_ 0000000000 R migration/6
root 356 2 0 0 __kthread_ 0000000000 R migration/7
root 2165 2 0 0 __kthread_ 0000000000 R migration/9
问题来了,既然 per_cpu 进程是和 cpu 绑定的,那么在 cpu hotplug 的时候,进程需要相应的 disable 和 enable。实现的方法可以有多种:
- 动态的销毁和创建线程。缺点是开销比较大。
- 设置进程的 cpu 亲和力
set_cpus_allowed_ptr()
。缺点是进程绑定的 cpu 如果被 down 掉,进程会迁移到其他 cpu 继续执行。
为了克服上述方案的缺点,适配 per_cpu 进程的 cpu hotplug 操作,设计了 kthread_park()
/kthread_unpark()
机制。
2.1 smpboot_register_percpu_thread()
per_cpu 进程从代码上看,实际也是调用 kthread_create()
来创建的。
- kernel/smpboot.c:
- kernel/kthread.c:
我们可以看到 smpboot_register 又增加了一层封装:kthread()
-> smpboot_thread_fn()
-> ht->thread_fn()
,这种封装的使用可以参考 cpu_stop_threads。
- kernel/stop_machine.c:
static struct smp_hotplug_thread cpu_stop_threads = {
.store = &cpu_stopper_task,
.thread_should_run = cpu_stop_should_run,
.thread_fn = cpu_stopper_thread,
.thread_comm = "migration/%u",
.create = cpu_stop_create,
.setup = cpu_stop_unpark,
.park = cpu_stop_park,
.pre_unpark = cpu_stop_unpark,
.selfparking = true,
};
static int __init cpu_stop_init(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
spin_lock_init(&stopper->lock);
INIT_LIST_HEAD(&stopper->works);
}
BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
stop_machine_initialized = true;
return 0;
}
我们可以看到 smpboot_thread_fn()
循环中实现了对 park 的支持,具体实现 kthread_should_park()
、kthread_parkme()
、kthread_park()
、kthread_unpark()
的代码分析:
- kernel/kthread.c:
bool kthread_should_park(void)
{
// (1) 判断进程所在 kthread 结构中的 KTHREAD_SHOULD_PARK 是否被置位
return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
}
void kthread_parkme(void)
{
__kthread_parkme(to_kthread(current));
}
| →
static void __kthread_parkme(struct kthread *self)
{
// (2) 如果当前进程的 KTHREAD_SHOULD_PARK 标志被置位 ,
// 将当前进程进入 TASK_PARKED 的阻塞状态。
// 如果 KTHREAD_SHOULD_PARK 不清除,
// 就算被 wake_up 唤醒还是会循环进入 TASK_PARKED 的阻塞状态。
__set_current_state(TASK_PARKED);
while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
complete(&self->parked);
schedule();
__set_current_state(TASK_PARKED);
}
clear_bit(KTHREAD_IS_PARKED, &self->flags);
__set_current_state(TASK_RUNNING);
}
int kthread_park(struct task_struct *k)
{
struct kthread *kthread = to_live_kthread(k);
int ret = -ENOSYS;
if (kthread) {
// (3) 设置 KTHREAD_IS_PARKED 标志位,并且唤醒进程进入 park 状态
if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
if (k != current) {
wake_up_process(k);
wait_for_completion(&kthread->parked);
}
}
ret = 0;
}
return ret;
}
void kthread_unpark(struct task_struct *k)
{
struct kthread *kthread = to_live_kthread(k);
if (kthread)
__kthread_unpark(k, kthread);
}
| →
static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
{
// (4) 清除 KTHREAD_IS_PARKED 标志位
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
/*
* We clear the IS_PARKED bit here as we don't wait
* until the task has left the park code. So if we'd
* park before that happens we'd see the IS_PARKED bit
* which might be about to be cleared.
*/
// 如果进程已经被 park,并且 wake_up 唤醒进程
if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
// 如果是 per_cpu 进程,重新绑定进程 cpu
if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
__kthread_bind(k, kthread->cpu, TASK_PARKED);
wake_up_state(k, TASK_PARKED);
}
}
2.2 cpu hotplug 支持
我们前面说到 park 机制的主要目的是为了 per_cpu 进程支持 cpu hotplug,具体怎么响应热插拔事件呢?
- kernel/smpboot.c:
3. 进程 freeze
在系统进入 suspend 的时候,会尝试冻住一些进程,以避免一些进程无关操作影响系统的 suspend 状态。主要的流程如下:
- kernel/power/suspend.c:
这 suspend_freeze 里面判断当前在那个阶段,有 3 个重要的变量:
- system_freezing_cnt - >0 表示系统全局的 freeze 开始;
- pm_freezing - =true 表示用户进程 freeze 开始;
- pm_nosig_freezing - =true 表示内核进程 freeze 开始;
具体代码分析如下:
- kernel/power/process.c:
- kernel/freezer.c:
-
suspend_freeze_processes()
->freeze_processes()
->try_to_freeze_tasks()
->freeze_task()
int freeze_processes(void)
{
int error;
int oom_kills_saved;
error = __usermodehelper_disable(UMH_FREEZING);
if (error)
return error;
// (1) 置位 PF_SUSPEND_TASK,确保当前进程不会被 freeze
/* Make sure this task doesn't get frozen */
current->flags |= PF_SUSPEND_TASK;
// (2) 使用全局 freeze 标志 system_freezing_cnt
if (!pm_freezing)
atomic_inc(&system_freezing_cnt);
pm_wakeup_clear();
printk("Freezing user space processes ... ");
// (3) 使用用户进程 freeze 标志 pm_freezing
pm_freezing = true;
oom_kills_saved = oom_kills_count();
// (4) freeze user_only 进程
// 判断进程是否可以被 freeze,唤醒进程 freeze 自己
error = try_to_freeze_tasks(true);
if (!error) {
__usermodehelper_set_disable_depth(UMH_DISABLED);
oom_killer_disable();
/*
* There might have been an OOM kill while we were
* freezing tasks and the killed task might be still
* on the way out so we have to double check for race.
*/
if (oom_kills_count() != oom_kills_saved &&
!check_frozen_processes()) {
__usermodehelper_set_disable_depth(UMH_ENABLED);
printk("OOM in progress.");
error = -EBUSY;
} else {
printk("done.");
}
}
printk("\n");
BUG_ON(in_atomic());
if (error)
thaw_processes();
return error;
}
| →
static int try_to_freeze_tasks(bool user_only)
{
struct task_struct *g, *p;
unsigned long end_time;
unsigned int todo;
bool wq_busy = false;
struct timeval start, end;
u64 elapsed_msecs64;
unsigned int elapsed_msecs;
bool wakeup = false;
int sleep_usecs = USEC_PER_MSEC;
#ifdef CONFIG_PM_SLEEP
char suspend_abort[MAX_SUSPEND_ABORT_LEN];
#endif
do_gettimeofday(&start);
end_time = jiffies + msecs_to_jiffies(freeze_timeout_msecs);
// (4.1) 如果是 kernel freeze,
// 停工有 WQ_FREEZABLE 标志的 workqueue
// 将 wq 的 pwq->max_active 设置成 0,新的 work 不能被执行
if (!user_only)
freeze_workqueues_begin();
while (true) {
todo = 0;
read_lock(&tasklist_lock);
// (4.2) 对每个进程执行 freeze_task()
for_each_process_thread(g, p) {
if (p == current || !freeze_task(p))
continue;
if (!freezer_should_skip(p))
todo++;
}
read_unlock(&tasklist_lock);
// (4.3) 如果是 kernel freeze,
// 判断停工的 workqueue 中残留的 work 有没有执行完
if (!user_only) {
wq_busy = freeze_workqueues_busy();
todo += wq_busy;
}
if (!todo || time_after(jiffies, end_time))
break;
if (pm_wakeup_pending()) {
#ifdef CONFIG_PM_SLEEP
pm_get_active_wakeup_sources(suspend_abort,
MAX_SUSPEND_ABORT_LEN);
log_suspend_abort_reason(suspend_abort);
#endif
wakeup = true;
break;
}
/*
* We need to retry, but first give the freezing tasks some
* time to enter the refrigerator. Start with an initial
* 1 ms sleep followed by exponential backoff until 8 ms.
*/
usleep_range(sleep_usecs / 2, sleep_usecs);
if (sleep_usecs < 8 * USEC_PER_MSEC)
sleep_usecs *= 2;
}
do_gettimeofday(&end);
elapsed_msecs64 = timeval_to_ns(&end) - timeval_to_ns(&start);
do_div(elapsed_msecs64, NSEC_PER_MSEC);
elapsed_msecs = elapsed_msecs64;
if (wakeup) {
printk("\n");
printk(KERN_ERR "Freezing of tasks aborted after %d.%03d seconds",
elapsed_msecs / 1000, elapsed_msecs % 1000);
} else if (todo) {
printk("\n");
printk(KERN_ERR "Freezing of tasks failed after %d.%03d seconds"
" (%d tasks refusing to freeze, wq_busy=%d):\n",
elapsed_msecs / 1000, elapsed_msecs % 1000,
todo - wq_busy, wq_busy);
read_lock(&tasklist_lock);
for_each_process_thread(g, p) {
if (p != current && !freezer_should_skip(p)
&& freezing(p) && !frozen(p))
sched_show_task(p);
}
read_unlock(&tasklist_lock);
} else {
printk("(elapsed %d.%03d seconds) ", elapsed_msecs / 1000,
elapsed_msecs % 1000);
}
return todo ? -EBUSY : 0;
}
|| →
bool freeze_task(struct task_struct *p)
{
unsigned long flags;
/*
* This check can race with freezer_do_not_count, but worst case that
* will result in an extra wakeup being sent to the task. It does not
* race with freezer_count(), the barriers in freezer_count() and
* freezer_should_skip() ensure that either freezer_count() sees
* freezing == true in try_to_freeze() and freezes, or
* freezer_should_skip() sees !PF_FREEZE_SKIP and freezes the task
* normally.
*/
if (freezer_should_skip(p))
return false;
spin_lock_irqsave(&freezer_lock, flags);
// (4.2.1) 检查当前进程是否可以被 freeze,
// 或者是否已经被 freeze
if (!freezing(p) || frozen(p)) {
spin_unlock_irqrestore(&freezer_lock, flags);
return false;
}
// (4.2.2) 如果是用户进程,伪造一个 signal 发送给进程
if (!(p->flags & PF_KTHREAD))
fake_signal_wake_up(p);
// (4.2.3) 如果是内核进程,wake_up 内核进程
else
wake_up_state(p, TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&freezer_lock, flags);
return true;
}
||| →
static inline bool freezing(struct task_struct *p)
{ 具体代码分析如下:
- kernel/power/process.c:
- kernel/freezer.c:
// 如果 system_freezing_cnt 为 0,说明全局 freeze 还没有开始
if (likely(!atomic_read(&system_freezing_cnt)))
return false;
return freezing_slow_path(p);
}
|||| →
bool freezing_slow_path(struct task_struct *p)
{
// (PF_NOFREEZE | PF_SUSPEND_TASK) 当前进程不能被 freeze
if (p->flags & (PF_NOFREEZE | PF_SUSPEND_TASK))
return false;
if (test_thread_flag(TIF_MEMDIE))
return false;
// 如果 pm_nosig_freezing 为 true,内核进程 freeze 已经开始,
// 当前进程可以被 freeze
if (pm_nosig_freezing || cgroup_freezing(p))
return true;
// 如果 pm_freezing 为 true,且当前进程为用户进程
// 当前进程可以被 freeze
if (pm_freezing && !(p->flags & PF_KTHREAD))
return true;
return false;
}
3.1 用户进程 freeze
freeze 用户态的进程利用了 signal 机制,系统 suspend 使能了 suspend 以后,调用 fake_signal_wake_up()
伪造一个信号唤醒进程,进程在 ret_to_user()
-> do_notify_resume()
-> do_signal()
-> get_signal()
-> try_to_freeze()
中 freeze 自己。
具体代码分析如下:
- kernel/freezer.c:
static inline bool try_to_freeze(void)
{
if (!(current->flags & PF_NOFREEZE))
debug_check_no_locks_held();
return try_to_freeze_unsafe();
}
| →
static inline bool try_to_freeze_unsafe(void)
{
might_sleep();
// 当前进程是否可以被 freeze
if (likely(!freezing(current)))
return false;
// 调用 __refrigerator() freeze 当前进程
return __refrigerator(false);
}
|| →
bool __refrigerator(bool check_kthr_stop)
{
/* Hmm, should we be allowed to suspend when there are realtime
processes around? */
bool was_frozen = false;
long save = current->state;
pr_debug("%s entered refrigerator\n", current->comm);
for (;;) {
// (1) 设置当前进程进入 TASK_UNINTERRUPTIBLE 阻塞状态
set_current_state(TASK_UNINTERRUPTIBLE);
spin_lock_irq(&freezer_lock);
// (2) 设置已经 freeze 标志 PF_FROZEN
current->flags |= PF_FROZEN;
// (3) 如果当前进程已经不是 freeze 状态,
// 退出 freeze
if (!freezing(current) ||
(check_kthr_stop && kthread_should_stop()))
current->flags &= ~PF_FROZEN;
spin_unlock_irq(&freezer_lock);
if (!(current->flags & PF_FROZEN))
break;
was_frozen = true;
schedule();
}
pr_debug("%s left refrigerator\n", current->comm);
/*
* Restore saved task state before returning. The mb'd version
* needs to be used; otherwise, it might silently break
* synchronization which depends on ordered task state change.
*/
set_current_state(save);
return was_frozen;
}
3.2 内核进程 freeze
内核进程对 freeze 的响应,有两个问题:
- wake_up_state(p, TASK_INTERRUPTIBLE) 能唤醒哪些内核进程。
- 内核进程怎么样来响应 freeze 状态,怎么样来 freeze 自己。
如果进程阻塞在信号量、mutex 等内核同步机制上,wake_up_state 并不能解除阻塞。因为这些机制都有 while(1) 循环来判断条件,是否成立,不成立只是简单的唤醒随即又会进入阻塞睡眠状态。
- kernel/locking/mutex.c:
-
mutex_lock()
->__mutex_lock_common()
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
struct lockdep_map *nest_lock, unsigned long ip,
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
for (;;) {
/*
* Lets try to take the lock again - this is needed even if
* we get here for the first time (shortly after failing to
* acquire the lock), to make sure that we get a wakeup once
* it's unlocked. Later on, if we sleep, this is the
* operation that gives us the lock. We xchg it to -1, so
* that when we release the lock, we properly wake up the
* other waiters. We only attempt the xchg if the count is
* non-negative in order to avoid unnecessary xchg operations:
*/
// (1) 如果 mutex_lock 条件成立,才退出
if (atomic_read(&lock->count) >= 0 &&
(atomic_xchg(&lock->count, -1) == 1))
break;
// (2) 如果如果有信号阻塞,也退出
/*
* got a signal? (This code gets eliminated in the
* TASK_UNINTERRUPTIBLE case.)
*/
if (unlikely(signal_pending_state(state, task))) {
ret = -EINTR;
goto err;
}
if (use_ww_ctx && ww_ctx->acquired > 0) {
ret = __mutex_lock_check_stamp(lock, ww_ctx);
if (ret)
goto err;
}
// (3) 否则继续进入阻塞休眠状态
__set_task_state(task, state);
/* didn't get the lock, go to sleep: */
spin_unlock_mutex(&lock->wait_lock, flags);
schedule_preempt_disabled();
spin_lock_mutex(&lock->wait_lock, flags);
}
}
所以 wake_up_state()
只能唤醒这种简单阻塞的内核进程,而对于阻塞在内核同步机制上是无能无力的:
void user_thread()
{
while(1)
{
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
}
}
内核进程响应 freeze 操作,也必须显式的调用 try_to_freeze()
或者 kthread_freezable_should_stop()
来 freeze 自己:
void user_thread()
{
while (!kthread_should_stop()) {
try_to_freeze();
}
}
所以从代码逻辑上看内核进程 freeze,并不会 freeze 所有内核进程,只 freeze 了 2 部分:一部分是设置了 WQ_FREEZABLE 标志的 workqueue,另一部分是内核进程主动调用 try_to_freeze()
并且在架构上设计的可以响应 freeze。
附:
static int
kthread(void *vp)
{
struct ktstate *k;
DECLARE_WAITQUEUE(wait, current);
int more;
k = vp;
current->flags |= PF_NOFREEZE;
set_user_nice(current, -10); //内核线程默认优先级
complete(&k->rendez);/* tell spawner we're running */
do {
spin_lock_irq(k->lock);
more = k->fn();
if (!more) {
add_wait_queue(k->waitq, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
}
spin_unlock_irq(k->lock);
if (!more) {
schedule();
remove_wait_queue(k->waitq, &wait);
} else
cond_resched();
} while (!kthread_should_stop());
complete(&k->rendez);/* tell spawner we're stopping */
return 0;
}
更多推荐
所有评论(0)