HAL 详解之 hardware 详解
文章出处:http://blog.csdn.net/shift_wwx/article/details/54969612
请转载的朋友标明出处~~
前言:
《Android 系统HAL 简介》一文和《Android,在争议中逃离 Linux 内核的 GPL 约束》中对HAL 做了简单的简介,这一文中对HAL 进行详细的分析。
android HAL 主要框架来源于:
/hardware/libhardware/hardware.c
/hardware/libhardware/include/hardware/hardware.h
本文主要对这两部分分析:
- hardware.h
- hardware.c
hardware.h
1、hw_module_t
/**
* Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
* and the fields of this data structure must begin with hw_module_t
* followed by module specific information.
*/
typedef struct hw_module_t {
/** tag must be initialized to HARDWARE_MODULE_TAG */
uint32_t tag;
/**
* The API version of the implemented module. The module owner is
* responsible for updating the version when a module interface has
* changed.
*
* The derived modules such as gralloc and audio own and manage this field.
* The module user must interpret the version field to decide whether or
* not to inter-operate with the supplied module implementation.
* For example, SurfaceFlinger is responsible for making sure that
* it knows how to manage different versions of the gralloc-module API,
* and AudioFlinger must know how to do the same for audio-module API.
*
* The module API version should include a major and a minor component.
* For example, version 1.0 could be represented as 0x0100. This format
* implies that versions 0x0100-0x01ff are all API-compatible.
*
* In the future, libhardware will expose a hw_get_module_version()
* (or equivalent) function that will take minimum/maximum supported
* versions as arguments and would be able to reject modules with
* versions outside of the supplied range.
*/
uint16_t module_api_version;
#define version_major module_api_version
/**
* version_major/version_minor defines are supplied here for temporary
* source code compatibility. They will be removed in the next version.
* ALL clients must convert to the new version format.
*/
/**
* The API version of the HAL module interface. This is meant to
* version the hw_module_t, hw_module_methods_t, and hw_device_t
* structures and definitions.
*
* The HAL interface owns this field. Module users/implementations
* must NOT rely on this value for version information.
*
* Presently, 0 is the only valid value.
*/
uint16_t hal_api_version;
#define version_minor hal_api_version
/** Identifier of module */
const char *id;
/** Name of this module */
const char *name;
/** Author/owner/implementor of the module */
const char *author;
/** Modules methods */
struct hw_module_methods_t* methods;
/** module's dso */
void* dso;
#ifdef __LP64__
uint64_t reserved[32-7];
#else
/** padding to 128 bytes, reserved for future use */
uint32_t reserved[32-7];
#endif
} hw_module_t;
首先来看结构体的解释:
每一个硬件模块必须有一个命名为HAL_MODULE_INFO_SYM的数据结构体。这个结构体成员必须以hw_module_t 开头。
这个命名在头文件中有定义:
#define HAL_MODULE_INFO_SYM HMI
例如hdmi cec:
typedef struct hdmi_cec_module {
/**
* Common methods of the HDMI CEC module. This *must* be the first member of
* hdmi_cec_module as users of this structure will cast a hw_module_t to hdmi_cec_module
* pointer in contexts where it's known the hw_module_t references a hdmi_cec_module.
*/
struct hw_module_t common;
} hdmi_module_t;
hdmi cec 就定义了一个自己的结构体hdmi_module_t,而开头也必须是hw_module_t
下面来详细解释hw_module_t 的数据成员:
1)tag
这个tag 必须初始化为 HARDWARE_MODULE_TAG
2)module_api_version
标记硬件模块的接口api 版本,当模块的接口变化的时候由module 自身更新这个值。
例如hdmi cec 就自己定义了一个版本:
#define HDMI_CEC_MODULE_API_VERSION_1_0 HARDWARE_MODULE_API_VERSION(1, 0)
3)hal_api_version
标记HAL api 的版本,主要标记hw_module_t,hw_module_methods_t,hw_device_t 等结构体的版本
目前都用宏HARDWARE_HAL_API_VERSION表示:
#define HARDWARE_HAL_API_VERSION HARDWARE_MAKE_API_VERSION(1, 0)
4)id
硬件模块的标记,查找module 的时候就是通过这个查找,很关键
例如hdmi cec:
#define HDMI_CEC_HARDWARE_MODULE_ID "hdmi_cec"
5)name
硬件模块的名字,与id 不同,id 原意是Identifier,也就是辨认都是通过id
6)author
author/owner/implementor 的标记
7)methods
变量是结构体指针 hw_module_methods_t*,里面是一个open 函数,device 的open 就靠这个methods
8)dso
在hardware.c中会解释,dlopen so 时候的handle
2、hw_module_methods_t
typedef struct hw_module_methods_t {
/** Open a specific device */
int (*open)(const struct hw_module_t* module, const char* id,
struct hw_device_t** device);
} hw_module_methods_t;
hw_module_t 的成员,放的是函数指针,成员是open,也就是硬件模块自身要有这样的open 函数,用于实现硬件模块对相应的设备进行初始化
3、hw_device_t
/**
* Every device data structure must begin with hw_device_t
* followed by module specific public methods and attributes.
*/
typedef struct hw_device_t {
/** tag must be initialized to HARDWARE_DEVICE_TAG */
uint32_t tag;
/**
* Version of the module-specific device API. This value is used by
* the derived-module user to manage different device implementations.
*
* The module user is responsible for checking the module_api_version
* and device version fields to ensure that the user is capable of
* communicating with the specific module implementation.
*
* One module can support multiple devices with different versions. This
* can be useful when a device interface changes in an incompatible way
* but it is still necessary to support older implementations at the same
* time. One such example is the Camera 2.0 API.
*
* This field is interpreted by the module user and is ignored by the
* HAL interface itself.
*/
uint32_t version;
/** reference to the module this device belongs to */
struct hw_module_t* module;
/** padding reserved for future use */
#ifdef __LP64__
uint64_t reserved[12];
#else
uint32_t reserved[12];
#endif
/** Close this device */
int (*close)(struct hw_device_t* device);
} hw_device_t;
上面hw_module_t 的时候说到,每个硬件模块有个名字为HAL_MODULE_INFO_SYM 的数据结构,而且成员必须是hw_module_t 开头。
这里一样,在硬件模块定义自身设备结构的时候,数据成员必须以hw_device_t 开头。
例如hdmi cec,在定义自身设备成员的时候就是以这个开头:
typedef struct hdmi_cec_device {
/**
* Common methods of the HDMI CEC device. This *must* be the first member of
* hdmi_cec_device as users of this structure will cast a hw_device_t to hdmi_cec_device
* pointer in contexts where it's known the hw_device_t references a hdmi_cec_device.
*/
struct hw_device_t common;
/*
* (*add_logical_address)() passes the logical address that will be used
* in this system.
*
* HAL may use it to configure the hardware so that the CEC commands addressed
* the given logical address can be filtered in. This method can be called
* as many times as necessary in order to support multiple logical devices.
* addr should be in the range of valid logical addresses for the call
* to succeed.
*
* Returns 0 on success or -errno on error.
*/
int (*add_logical_address)(const struct hdmi_cec_device* dev, cec_logical_address_t addr);
/*
* (*clear_logical_address)() tells HAL to reset all the logical addresses.
*
* It is used when the system doesn't need to process CEC command any more,
* hence to tell HAL to stop receiving commands from the CEC bus, and change
* the state back to the beginning.
*/
void (*clear_logical_address)(const struct hdmi_cec_device* dev);
/*
* (*get_physical_address)() returns the CEC physical address. The
* address is written to addr.
*
* The physical address depends on the topology of the network formed
* by connected HDMI devices. It is therefore likely to change if the cable
* is plugged off and on again. It is advised to call get_physical_address
* to get the updated address when hot plug event takes place.
*
* Returns 0 on success or -errno on error.
*/
int (*get_physical_address)(const struct hdmi_cec_device* dev, uint16_t* addr);
/*
* (*send_message)() transmits HDMI-CEC message to other HDMI device.
*
* The method should be designed to return in a certain amount of time not
* hanging forever, which can happen if CEC signal line is pulled low for
* some reason. HAL implementation should take the situation into account
* so as not to wait forever for the message to get sent out.
*
* It should try retransmission at least once as specified in the standard.
*
* Returns error code. See HDMI_RESULT_SUCCESS, HDMI_RESULT_NACK, and
* HDMI_RESULT_BUSY.
*/
int (*send_message)(const struct hdmi_cec_device* dev, const cec_message_t*);
/*
* (*register_event_callback)() registers a callback that HDMI-CEC HAL
* can later use for incoming CEC messages or internal HDMI events.
* When calling from C++, use the argument arg to pass the calling object.
* It will be passed back when the callback is invoked so that the context
* can be retrieved.
*/
void (*register_event_callback)(const struct hdmi_cec_device* dev,
event_callback_t callback, void* arg);
/*
* (*get_version)() returns the CEC version supported by underlying hardware.
*/
void (*get_version)(const struct hdmi_cec_device* dev, int* version);
/*
* (*get_vendor_id)() returns the identifier of the vendor. It is
* the 24-bit unique company ID obtained from the IEEE Registration
* Authority Committee (RAC).
*/
void (*get_vendor_id)(const struct hdmi_cec_device* dev, uint32_t* vendor_id);
/*
* (*get_port_info)() returns the hdmi port information of underlying hardware.
* info is the list of HDMI port information, and 'total' is the number of
* HDMI ports in the system.
*/
void (*get_port_info)(const struct hdmi_cec_device* dev,
struct hdmi_port_info* list[], int* total);
/*
* (*set_option)() passes flags controlling the way HDMI-CEC service works down
* to HAL implementation. Those flags will be used in case the feature needs
* update in HAL itself, firmware or microcontroller.
*/
void (*set_option)(const struct hdmi_cec_device* dev, int flag, int value);
/*
* (*set_audio_return_channel)() configures ARC circuit in the hardware logic
* to start or stop the feature. Flag can be either 1 to start the feature
* or 0 to stop it.
*
* Returns 0 on success or -errno on error.
*/
void (*set_audio_return_channel)(const struct hdmi_cec_device* dev, int port_id, int flag);
/*
* (*is_connected)() returns the connection status of the specified port.
* Returns HDMI_CONNECTED if a device is connected, otherwise HDMI_NOT_CONNECTED.
* The HAL should watch for +5V power signal to determine the status.
*/
int (*is_connected)(const struct hdmi_cec_device* dev, int port_id);
/* Reserved for future use to maximum 16 functions. Must be NULL. */
void* reserved[16 - 11];
} hdmi_cec_device_t;
下面来详细解释hw_device_t 的数据成员:
1)tag
必须初始化为HARDWARE_DEVICE_TAG
2)version
硬件设备接口的版本
3)module
标记该设备属于哪个硬件模块,例如audio 可能会有多种device
4)reserved
暂时没用到
5)close
函数指针,也就是说需要实现close 用于后面device 设备close 回收
4、两个对外接口
hw_get_module、hw_get_module_by_class
下面hardware.c 中详细说明
小结:android HAL 在创建的时候,需要实现四个部分:
1、定义一个名字叫HMI 或HAL_MODULE_INFO_SYM 的模块数据结构,开头必须是hw_module_t
2、定义hw_module_methods_t 的结构体,实现open
3、定义一个设备的数据结构,里面可以设备自身相关的数据成员,但开头必须是hw_device_t
4、设备自身的成员的处理
hardware.c
主要目的就是通过函数hw_get_module、hw_get_module_by_class 找到对应的模组
1、hw_get_module
int hw_get_module(const char *id, const struct hw_module_t **module)
{
return hw_get_module_by_class(id, NULL, module);
}
可以看到hw_get_module 和hw_get_module_by_class 的根本区别第二个参数是否为NULL
在说明hardware.h 的时候说明过,HAL 首先要定义一个数据结构,这个数据结构开头必须是hw_module_t,也就是说hw_module_t 可能是共同的,但是模块自身的数据结构实现的接口可能不同。例如audio 就分primary、a2dp,这两个模组的数据结构开头hw_module_t 可以是相同的。
因此,hw_get_module_by_class 的第一个参数是hw_module_t 的id,第二个参数是区分模组。
2、hw_get_module_by_class
int hw_get_module_by_class(const char *class_id, const char *inst,
const struct hw_module_t **module)
{
int i = 0;
char prop[PATH_MAX] = {0};
char path[PATH_MAX] = {0};
char name[PATH_MAX] = {0};
char prop_name[PATH_MAX] = {0};
if (inst)
snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
else
strlcpy(name, class_id, PATH_MAX);
/*
* Here we rely on the fact that calling dlopen multiple times on
* the same .so will simply increment a refcount (and not load
* a new copy of the library).
* We also assume that dlopen() is thread-safe.
*/
/* First try a property specific to the class and possibly instance */
snprintf(prop_name, sizeof(prop_name), "ro.hardware.%s", name);
if (property_get(prop_name, prop, NULL) > 0) {
if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
goto found;
}
}
/* Loop through the configuration variants looking for a module */
for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {
if (property_get(variant_keys[i], prop, NULL) == 0) {
continue;
}
if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
goto found;
}
}
/* Nothing found, try the default */
if (hw_module_exists(path, sizeof(path), name, "default") == 0) {
goto found;
}
return -ENOENT;
found:
/* load the module, if this fails, we're doomed, and we should not try
* to load a different variant. */
return load(class_id, path, module);
}
1)首先确定模组的全名name
class_id.inst 组成的,如果inst 是NULL 模组的全名就是id
2) 根据name 找到这个so 是否存在,如果存在调用load
从这里看出来,HAL 的so 命名是有规定的:
a、ro.hardware.name 已经定义好的,这里的name 就是1)中说的全名
如果定义了,so 的名字应该是name.prop.so
b、ro.hardware 或 ro.produce.board 或 ro.board.platform 或 ro.arch 中定义了prop
组合后so 的名字是name.prop.so
c、如果没有这样的prop定义,那so 的名字是name.default.so
例如目前我们平台的hdmi cec 的so 就是来源ro.hardware 中的prop
3、load
static int load(const char *id,
const char *path,
const struct hw_module_t **pHmi)
{
int status = -EINVAL;
void *handle = NULL;
struct hw_module_t *hmi = NULL;
/*
* load the symbols resolving undefined symbols before
* dlopen returns. Since RTLD_GLOBAL is not or'd in with
* RTLD_NOW the external symbols will not be global
*/
handle = dlopen(path, RTLD_NOW);
if (handle == NULL) {
char const *err_str = dlerror();
ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
status = -EINVAL;
goto done;
}
/* Get the address of the struct hal_module_info. */
const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
hmi = (struct hw_module_t *)dlsym(handle, sym);
if (hmi == NULL) {
ALOGE("load: couldn't find symbol %s", sym);
status = -EINVAL;
goto done;
}
/* Check that the id matches */
if (strcmp(id, hmi->id) != 0) {
ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);
status = -EINVAL;
goto done;
}
hmi->dso = handle;
/* success */
status = 0;
done:
if (status != 0) {
hmi = NULL;
if (handle != NULL) {
dlclose(handle);
handle = NULL;
}
} else {
ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
id, path, *pHmi, handle);
}
*pHmi = hmi;
return status;
}
1)dlopen 对应path 的so
2)dlsym 获取HMI 的地址
至此,hardware 相关的部分就讲解完。
总结:
1、获取module 方式有两种
hw_get_module_by_class、hw_get_module
前者是针对公用module 的模块,后者是单个的,当然用前者找单个的module 也是可以的,第二个参数传NULL 即可
注意最后一个参数是hw_module_t **module
2、通过1 中获取到module 数据结构指针变量在内存中地址
3、根据2 中的module 就可以调用module 中open 初始化硬件设备,最终获得hw_device_t
4、根据3 中的device 实现真正的调用,实现与内核的通信
更多推荐
所有评论(0)