树莓派3B实现人脸图像采集与识别
linux-dash
A beautiful web dashboard for Linux
项目地址:https://gitcode.com/gh_mirrors/li/linux-dash
免费下载资源
·
描述:
树莓派3B+平台搭载了Linux嵌入式系统,在Linux(Ubuntu 16.04)上安装python、OpenCV和tensorflow便可以组成一台mini主机用于数据处理。其硬件系统介绍如下:
- 博通BCM2837B0 SoC,集成四核ARM Cortex-A53(ARMv8)64位@ 1.4GHz CPU,集成博通 Videocore-IV GPU
- 内存:1GB LPDDR2 SDRAM
- 有线网络:千兆以太网(通过USB2.0通道,最大吞吐量 300Mbps)
- 无线网络:2.4GHz和5GHz 双频Wi-Fi,支持802.11b/g/n/ac
- 蓝牙:蓝牙4.2&低功耗蓝牙(BLE)
- 存储:Micro-SD
- 其他接口:HDMI,3.5mm模拟音频视频插孔,4x USB 2.0,以太网,摄像机串行接口(CSI),显示器串行接口(DSI),MicroSD卡座,40pin扩展双排插针
- 尺寸:82mmx 56mmx 19.5mm,50克
pivideostream.py - 采集数据
from picamera.array import PiRGBArray
from picamera import PiCamera
from threading import Thread
import cv2
class PiVideoStream:
def __init__(self, resolution=(640, 480), framerate=30):
self.camera = PiCamera()
self.camera.resolution = resolution
self.camera.framerate = framerate
self.rawCapture = PiRGBArray(self.camera, size=resolution)
self.stream = self.camera.capture_continuous(self.rawCapture,format='bgr', use_video_port=True)
self.image = None
self.stopped = False
def start(self):
t = Thread(target=self.update)
t.daemon = True
t.start()
return self
def update(self):
for frame in self.stream:
self.image = frame.array
self.rawCapture.truncate(0)
if self.stopped:
self.stream.close()
self.rawCapture.close()
self.camera.close()
return
def read(self):
return self.image
def stop(self):
self.stopped = True
process_img_thread.py - 主程序
from pivideostream import PiVideoStream
import cv2
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
def detect_in_thread():
# Start updating frames in threaded manner
face_cascade = cv2.CascadeClassifier('./haarcascades/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('./haarcascades/haarcascade_eye.xml')
thread_stream = PiVideoStream()
thread_stream.start()
time.sleep(2)
# Read frames
while True:
# Original image
image = thread_stream.read()
# Full image - face detection
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray,1.3,5)
for (x,y,w,h) in faces:
detected_face = cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2)
# Region of interest - eyes detection
roi_color = image[y:y+h,x:x+w]
roi_gray = gray[y:y+h,x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray,1.03,5,0,(40,40))
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,255),2)
# Show computed image
cv2.imshow('Threaded Camera OpenCV Preview',image)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Close image window and thread
cv2.destroyAllWindows()
thread_stream.stop()
if __name__ == "__main__":
detect_in_thread()
问题解决:
I am having problems with Python thread OpenCV (not sure if this is possible), but the threading PiCamera catches the frame well.
I tried the following except the above:
- Use the "YUV" color space instead of "RGB" and simply access the first (Y - lumminance) channel to get grayscale data, wasting less time fetching frames and converting from RGB to grayscale
- Try to use LBP cascade instead of HAAR (for example ) - should be faster, but less accurate
/usr/local/share/OpenCV/lbpcascades/lbpcascade_frontalface.xml
GitHub 加速计划 / li / linux-dash
10.39 K
1.2 K
下载
A beautiful web dashboard for Linux
最近提交(Master分支:2 个月前 )
186a802e
added ecosystem file for PM2 4 年前
5def40a3
Add host customization support for the NodeJS version 4 年前
更多推荐
已为社区贡献15条内容
所有评论(0)