linux struct stat 结构
stat() -- 获取文件大小
|
struct stat
{
dev_t st_dev; /* ID of device containing file -文件所在设备的ID*/
ino_t st_ino; /* inode number -inode节点号*/
mode_t st_mode; /* protection -保护模式?*/
nlink_t st_nlink; /* number of hard links -链向此文件的连接数(硬连接)*/
uid_t st_uid; /* user ID of owner -user id*/
gid_t st_gid; /* group ID of owner - group id*/
dev_t st_rdev; /* device ID (if special file) -设备号,针对设备文件*/
off_t st_size; /* total size, in bytes -文件大小,字节为单位*/
blksize_t st_blksize; /* blocksize for filesystem I/O -系统块的大小*/
blkcnt_t st_blocks; /* number of blocks allocated -文件所占块数*/
time_t st_atime; /* time of last access -文件数据的最后访问时间 eg:read*/
time_t st_mtime; /* time of last modification -文件数据的最后修改时间 eg:write*/
time_t st_ctime; /* time of last status change -i节点状态的最后更改时间 eg:chmod chown*/
};
struct stat
stat,lstat,fstat1 函数都是获取文件(普通文件,目录,管道,socket,字符,块()的属性。函数原型#include <sys/stat.h>
int stat(const char *restrict pathname, struct stat *restrict buf);提供文件名字,获取文件对应属性。
int fstat(int filedes, struct stat *buf);通过文件描述符获取文件对应的属性。
int lstat(const char *restrict pathname, struct stat *restrict buf);连接文件描述命,获取文件属性。2 文件对应的属性
struct stat {
mode_t st_mode; //文件对应的模式,文件,目录等
ino_t st_ino; //inode节点号
dev_t st_dev; //设备号码
dev_t st_rdev; //特殊设备号码
nlink_t st_nlink; //文件的连接数
uid_t st_uid; //文件所有者
gid_t st_gid; //文件所有者对应的组
off_t st_size; //普通文件,对应的文件字节数
time_t st_atime; //文件最后被访问的时间
time_t st_mtime; //文件内容最后被修改的时间
time_t st_ctime; //文件状态改变时间
blksize_t st_blksize; //文件内容对应的块大小
blkcnt_t st_blocks; //伟建内容对应的块数量
};
----------------------------------------------------------------------------------------
#include <unsitd.h>
#inlcude <sys/stat.h>
#include <sys/types.h>
int fstat(int filedes,struct stat *buf);
int stat(const char *path,struct stat *buf);
int lstat(const char *path,struct stat *buf);
这三个系统调用都可以返回指定文件的状态信息,这些信息被写到结构struct stat的缓冲区中。通过分析这个结构可以获得指定文件的信息。
void report(struct stat *ptr)
{
printf("The major device no is:%d\n",major(ptr->st_dev));//主设备号
printf("The minor device no is:%d\n",minor(ptr->st_dev));//从设备号
printf("The file's node number is:%d\n",ptr->st_ino);//文件节点号
printf("The file's access mode is:%d\n",ptr->st_mode);//文件的访问模式
printf("The file's hard link number is:%d\n",ptr->st_nlink);//文件的硬链接数目
printf("The file's user id is:%d\n",ptr->uid);//文件拥有者的ID
printf("The file's group id is:%d\n",ptr->gid);//文件的组ID
printf("The file's size is:%d\n",ptr->st_size);//文件的大小
printf("The block size is:%d\n",ptr->blksize);//文件占用的块数量
printf("The number of allocated blocks is:%d\n",ptr->st_blocks);//文件分配块数量
struct tm*accesstime,*lmodifytime,*lchangetime;//访问时间,修改时间,最后一个改变时间(属性)
accesstime=localtime(&(ptr->st_atime));
accesstime=localtime(&(ptr->st_mtime));
accesstime=localtime(&(ptr->st_ctime));
printf("The last access time is: %d::%d::%d\n",accesstime->hour,accesstime->min,accesstime->sec);
printf("The last modify time is:%d::%d::%d\n",lmodifytime->hour,lmodifytime->min,lmodifytime->sec);
printf("The last change time is:%d::%d::%d\n",lchangetime->hour,lchangetime->min,lchangetime->sec);
}
结构time_t可用用localtime转换成tm结构,获得本地时间。
stat系统调用系列包括了fstat、stat和lstat,它们都是用来返回“相关文件状态信息”的,三者的不同之处在于设定源文件的方式不同。
1
首先隆重介绍的是一个非常重要的”VIP”人物,他是fstat, stat和lstat三者都要用到的一个结构体类型,名字叫做struct stat。可以说,没有这个struct stat的支持,上述三个系统调用将寸步难行。
这个struct stat结构体在不同的UNIX/Linux系统中的定义是有小的区别的,但你完全不用担心,这并不会影响我们的使用。
在struct stat结构体中我们常用的且各个平台都一定有的域是:
st_mode 文件权限和文件类型信息 (记住这个黑体橘红色)
st_ino 与该文件关联的inode
st_dev 保存文件的设备
st_uid 文件属主的UID号
st_gid 文件属主的GID号
st_atime 文件上一次被访问的时间
st_ctime 文件的权限、属主、组或内容上一次被修改的时间
st_mtime 文件的内容上一次被修改的时间。(和st_ctime的不同之处显而易见)
st_nlink 该文件上硬连接的个数
我分别提取了solaris(UNIX)和fedora(Linux)的struct stat结构体的原始定义:大家可以自己比对一下便可以发现两者确实有所不同,但主要的域是完全相同的。
solaris的struct stat定义:
struct stat {
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
off_t st_size;
timestruc_t st_atim;
timestruc_t st_mtim;
timestruc_t st_ctim;
blksize_t st_blksize;
blkcnt_t st_blocks;
char st_fstype[_ST_FSTYPSZ];
};
fedora的struct stat定义:
struct stat
{
__dev_t st_dev; /* Device. */
unsigned short int __pad1;
__ino_t st_ino; /* File serial number. */
__mode_t st_mode; /* File mode. */
__nlink_t st_nlink; /* Link count. */
__uid_t st_uid; /* User ID of the file’s owner. */
__gid_t st_gid; /* Group ID of the file’s group.*/
__dev_t st_rdev; /* Device number, if device. */
unsigned short int __pad2;
__off_t st_size; /* Size of file, in bytes. */
__blksize_t st_blksize; /* Optimal block size for I/O. */
__blkcnt_t st_blocks; /* Number 512-byte blocks allocated. */
struct timespec st_atim; /* Time of last access. */
struct timespec st_mtim; /* Time of last modification. */
struct timespec st_ctim; /* Time of last status change. */
unsigned long int __unused4;
unsigned long int __unused5;
};
2
大家一定注意到了,在上面列举域的时候,我在st_mode处使用了黑体橘红色 标识,原因在于这个域不像其他域那么容易使用,其他的域的值显而易见,而st_mode域是需要一些宏予以配合才能使用的。其实,通俗说,这些宏就是一些特定位置为1的二进制数的外号,我们使用它们和st_mode进行”&”操作,从而就可以得到某些特定的信息。
文件类型标志包括:
S_IFBLK:文件是一个特殊的块设备
S_IFDIR:文件是一个目录
S_IFCHR:文件是一个特殊的字符设备
S_IFIFO:文件是一个FIFO设备
S_IFREG:文件是一个普通文件(REG即使regular啦)
S_IFLNK:文件是一个符号链接
其他模式标志包括:
S_ISUID:文件设置了SUID位
S_ISGID:文件设置了SGID位
S_ISVTX:文件设置了sticky位
用于解释st_mode标志的掩码包括:
S_IFMT:文件类型
S_IRWXU:属主的读/写/执行权限,可以分成S_IXUSR, S_IRUSR, S_IWUSR
S_IRWXG:属组的读/写/执行权限,可以分成S_IXGRP, S_IRGRP, S_IWGRP
S_IRWXO:其他用户的读/写/执行权限,可以分为S_IXOTH, S_IROTH, S_IWOTH
还有一些用于帮助确定文件类型的宏定义,这些和上面的宏不一样,这些是带有参数的宏,类似与函数的使用方法:
S_ISBLK:测试是否是特殊的块设备文件
S_ISCHR:测试是否是特殊的字符设备文件
S_ISDIR:测试是否是目录(我估计find . -type d的源代码实现中就用到了这个宏)
S_ISFIFO:测试是否是FIFO设备
S_ISREG:测试是否是普通文件
S_ISLNK:测试是否是符号链接
S_ISSOCK:测试是否是socket
3
我们已经学习完了struct stat和各种st_mode相关宏,现在就可以拿它们和stat系统调用相互配合工作了!
int fstat(int filedes, struct stat *buf);
int stat(const char *path, struct stat *buf);
int lstat(const char *path, struct stat *buf);
聪明人一眼就能看出来fstat的第一个参数是和另外两个不一样的,对!fstat区别于另外两个系统调用的地方在于,fstat系统调用接受的是 一个“文件描述符”,而另外两个则直接接受“文件全路径”。文件描述符是需要我们用open系统调用后才能得到的,而文件全路经直接写就可以了。
stat 和lstat的区别:当文件是一个符号链接时,lstat返回的是该符号链接本身的信息;而stat返回的是该链接指向的文件的信息。(似乎有些晕吧,这 样记,lstat比stat多了一个l,因此它是有本事处理符号链接文件的,因此当遇到符号链接文件时,lstat当然不会放过。而 stat系统调用没有这个本事,它只能对符号链接文件睁一只眼闭一只眼,直接去处理链接所指文件喽)
更多推荐
所有评论(0)