Linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。

一、互斥锁(mutex)
  锁机制是同一时刻只允许一个线程执行一个关键部分的代码。

 1. 初始化锁
  int pthread_mutex_init(pthread_mutex_t *mutex,const pthread_mutex_attr_t *mutexattr);
   其中参数 mutexattr 用于指定锁的属性(见下),如果为NULL则使用缺省属性。
   互斥锁的属性在创建锁的时候指定,在LinuxThreads实现中仅有一个锁类型属性,不同的锁类型在试图对一个已经被锁定的互斥锁加锁时表现不同。当前有四个值可供选择:
   (1)PTHREAD_MUTEX_TIMED_NP,这是缺省值,也就是普通锁。当一个线程加锁以后,其余请求锁的线程将形成一个等待队列,并在解锁后按优先级获得锁。这种锁策略保证了资源分配的公平性。
   (2)PTHREAD_MUTEX_RECURSIVE_NP,嵌套锁,允许同一个线程对同一个锁成功获得多次,并通过多次unlock解锁。如果是不同线程请求,则在加锁线程解锁时重新竞争。
   (3)PTHREAD_MUTEX_ERRORCHECK_NP,检错锁,如果同一个线程请求同一个锁,则返回EDEADLK,否则与PTHREAD_MUTEX_TIMED_NP类型动作相同。这样就保证当不允许多次加锁时不会出现最简单情况下的死锁。
   (4)PTHREAD_MUTEX_ADAPTIVE_NP,适应锁,动作最简单的锁类型,仅等待解锁后重新竞争。

 2. 阻塞加锁
  int pthread_mutex_lock(pthread_mutex *mutex);
 3. 非阻塞加锁
   int pthread_mutex_trylock( pthread_mutex_t *mutex);
   该函数语义与 pthread_mutex_lock() 类似,不同的是在锁已经被占据时返回 EBUSY 而不是挂起等待。
 4. 解锁(要求锁是lock状态,并且由加锁线程解锁)
  int pthread_mutex_unlock(pthread_mutex *mutex);
 5. 销毁锁(此时锁必需unlock状态,否则返回EBUSY)
  int pthread_mutex_destroy(pthread_mutex *mutex);

  示例代码:

[oracle@localhost]$ cat mutextest.c


#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int gn;

void* thread(void *arg)
{
    printf("thread's ID is  %d\n",pthread_self());
    pthread_mutex_lock(&mutex);
    gn = 12;
    printf("Now gn = %d\n",gn);
    pthread_mutex_unlock(&mutex);
    return NULL;
}

int main()
{
    pthread_t id;
    printf("main thread's ID is %d\n",pthread_self());
    gn = 3;
    printf("In main func, gn = %d\n",gn);
    if (!pthread_create(&id, NULL, thread, NULL))
    {
        printf("Create thread success!\n");
    }else
    {
        printf("Create thread failed!\n");
    }
    pthread_join(id, NULL);
    pthread_mutex_destroy(&mutex);

    return 0;

}


[oracle@localhost]$


二、条件变量(cond)

  条件变量是利用线程间共享全局变量进行同步的一种机制。条件变量上的基本操作有:触发条件(当条件变为 true 时);等待条件,挂起线程直到其他线程触发条件。
   
   1. 初始化条件变量
     int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *cond_attr);
      尽管POSIX标准中为条件变量定义了属性,但在Linux中没有实现,因此cond_attr值通常为NULL,且被忽略。
   2. 有两个等待函数
      (1)无条件等待
         int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex);
      (2)计时等待
         int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
          如果在给定时刻前条件没有满足,则返回ETIMEOUT,结束等待,其中abstime以与time()系统调用相同意义的绝对时间形式出现,0表示格林尼治时间1970年1月1日0时0分0秒。
 
      无论哪种等待方式,都必须和一个互斥锁配合,以防止多个线程同时请求(用 pthread_cond_wait() 或 pthread_cond_timedwait() 请求)竞争条件(Race Condition)。mutex互斥锁必须是普通锁(PTHREAD_MUTEX_TIMED_NP)或者适应锁(PTHREAD_MUTEX_ADAPTIVE_NP),且在调用pthread_cond_wait()前必须由本线程加锁(pthread_mutex_lock()),而在更新条件等待队列以前,mutex保持锁定状态,并在线程挂起进入等待前解锁。在条件满足从而离开pthread_cond_wait()之前,mutex将被重新加锁,以与进入pthread_cond_wait()前的加锁动作对应。

   3. 激发条件
     (1)激活一个等待该条件的线程(存在多个等待线程时按入队顺序激活其中一个)  
         int pthread_cond_signal(pthread_cond_t *cond);
     (2)激活所有等待线程
      int pthread_cond_broadcast(pthread_cond_t *cond);

   4. 销毁条件变量
     int pthread_cond_destroy(pthread_cond_t *cond);
      只有在没有线程在该条件变量上等待的时候才能销毁这个条件变量,否则返回EBUSY


说明:

  1. pthread_cond_wait 自动解锁互斥量(如同执行了pthread_unlock_mutex),并等待条件变量触发。这时线程挂起,不占用CPU时间,直到条件变量被触发(变量为ture)。在调用 pthread_cond_wait之前,应用程序必须加锁互斥量。pthread_cond_wait函数返回前,自动重新对互斥量加锁(如同执行了pthread_lock_mutex)。

  2. 互斥量的解锁和在条件变量上挂起都是自动进行的。因此,在条件变量被触发前,如果所有的线程都要对互斥量加锁,这种机制可保证在线程加锁互斥量和进入等待条件变量期间,条件变量不被触发。条件变量要和互斥量相联结,以避免出现条件竞争——个线程预备等待一个条件变量,当它在真正进入等待之前,另一个线程恰好触发了该条件(条件满足信号有可能在测试条件和调用pthread_cond_wait函数(block)之间被发出,从而造成无限制的等待)。

  3. 条件变量函数不是异步信号安全的,不应当在信号处理程序中进行调用。特别要注意,如果在信号处理程序中调用 pthread_cond_signal 或 pthread_cond_boardcast 函数,可能导致调用线程死锁

示例代码1:

[oracle@localhost]$ cat condtest1.c


#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"

pthread_mutex_t mutex;
pthread_cond_t cond;

void hander(void *arg)
{
    free(arg);
    (void)pthread_mutex_unlock(&mutex);
}

void *thread1(void *arg)
{
    pthread_cleanup_push(hander, &mutex);
    while(1)
    {
        printf("thread1 is running\n");
        pthread_mutex_lock(&mutex);
        pthread_cond_wait(&cond,&mutex);
        printf("thread1 applied the condition\n");
        pthread_mutex_unlock(&mutex);
        sleep(4);
    }
    pthread_cleanup_pop(0);
}

void *thread2(void *arg)
{
    while(1)
    {
        printf("thread2 is running\n");
        pthread_mutex_lock(&mutex);
        pthread_cond_wait(&cond,&mutex);
        printf("thread2 applied the condition\n");
        pthread_mutex_unlock(&mutex);
        sleep(1);
    }
}

int main()
{
    pthread_t thid1,thid2;
    printf("condition variable study!\n");
    pthread_mutex_init(&mutex,NULL);
    pthread_cond_init(&cond,NULL);
    pthread_create(&thid1,NULL,thread1,NULL);
    pthread_create(&thid2,NULL,thread2,NULL);

    sleep(1);

    do{
        pthread_cond_signal(&cond);
    }while(1);

    sleep(20);
    pthread_exit(0);

    return 0;
}

[oracle@localhost]$


示例代码2:

[oracle@localhost]$ cat condtest2.c


#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

struct node
{
    int n_number;
    struct node *n_next;
}*head = NULL;

static void cleanup_handler(void *arg)
{
    printf("Cleanup handler of second thread.\n");
    free(arg);
    (void)pthread_mutex_unlock(&mtx);
}

static void *thread_func(void *arg)
{
    struct node *p = NULL;
    pthread_cleanup_push(cleanup_handler, p);

    while (1)
    {
        // 这个mutex主要是用来保证pthread_cond_wait的并发性。
        pthread_mutex_lock(&mtx);
        while (head == NULL)
        {
            /* 这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
            * 这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
            * 程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
            * 这个时候,应该让线程继续进入pthread_cond_wait
            * pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
            * 然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
            * 而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
            * 用这个流程是比较清楚的。*/

            pthread_cond_wait(&cond, &mtx);
            p = head;
            head = head->n_next;
            printf("Got %d from front of queue\n", p->n_number);
            free(p);
        }

        pthread_mutex_unlock(&mtx); // 临界区数据操作完毕,释放互斥锁。
    }

    pthread_cleanup_pop(0);

    return 0;

}

int main(void)
{
    pthread_t tid;
    int i;
    struct node *p;

    /* 子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,
    * 而不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大。*/

    pthread_create(&tid, NULL, thread_func, NULL);

    sleep(1);

    for (i = 0; i < 10; i++)
    {
        p = (struct node*)malloc(sizeof(struct node));
        p->n_number = i;
        pthread_mutex_lock(&mtx); // 需要操作head这个临界资源,先加锁。

        p->n_next = head;
        head = p;

        pthread_cond_signal(&cond);

        pthread_mutex_unlock(&mtx); //解锁

        sleep(1);
    }

    printf("thread 1 wanna end the line.So cancel thread 2.\n");

    /* 关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,
    * 退出线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。*/

    pthread_cancel(tid);

    pthread_join(tid, NULL);

    printf("All done -- exiting\n");

    return 0;
}

[oracle@localhost]$


可以看出,等待条件变量信号的用法约定一般是这样的:
...
pthread_mutex_lock(&mutex);
...
pthread_cond_wait (&cond, &mutex);
...
pthread_mutex_unlock (&mutex);
...

相信很多人都会有这个疑问:为什么pthread_cond_wait需要的互斥锁不在函数内部定义,而要使用户定义的呢?现在没有时间研究 pthread_cond_wait 的源代码,带着这个问题对条件变量的用法做如下猜测,希望明白真相看过源代码的朋友不吝指正。

1. pthread_cond_wait 和 pthread_cond_timewait 函数为什么需要互斥锁?因为:条件变量是线程同步的一种方法,这两个函数又是等待信号的函数,函数内部一定有须要同步保护的数据。
2. 使用用户定义的互斥锁而不在函数内部定义的原因是:无法确定会有多少用户使用条件变量,所以每个互斥锁都须要动态定义,而且管理大量互斥锁的开销太大,使用用户定义的即灵活又方便,符合UNIX哲学的编程风格(随便推荐阅读《UNIX编程哲学》这本好书!)。
3. 好了,说完了1和2,我们来自由猜测一下 pthread_cond_wait 函数的内部结构吧:
  int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
   {
      if(没有条件信号)
      {
         (1)pthread_mutex_unlock (mutex); // 因为用户在函数外面已经加锁了(这是使用约定),但是在没有信号的情况下为了让其他线程也能等待cond,必须解锁。
         (2) 阻塞当前线程,等待条件信号(当然应该是类似于中断触发的方式等待,而不是软件轮询的方式等待)... 有信号就继续执行后面。
         (3) pthread_mutex_lock (mutex); // 因为用户在函数外面要解锁(这也是使用约定),所以要与1呼应加锁,保证用户感觉依然是自己加锁、自己解锁。
      }      
      ...
  }


三、 信号量


 如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。
   线程使用的基本信号量函数有四个:

  #include <semaphore.h>

     1. 初始化信号量
      int sem_init (sem_t *sem , int pshared, unsigned int value);

      参数:
      sem - 指定要初始化的信号量;
      pshared - 信号量 sem 的共享选项,linux只支持0,表示它是当前进程的局部信号量;
      value - 信号量 sem 的初始值。

      2. 信号量值加1
      给参数sem指定的信号量值加1。
     int sem_post(sem_t *sem);

     3. 信号量值减1
      给参数sem指定的信号量值减1。
     int sem_wait(sem_t *sem);
      如果sem所指的信号量的数值为0,函数将会等待直到有其它线程使它不再是0为止。

     4. 销毁信号量
    销毁指定的信号量。
  int sem_destroy(sem_t *sem);

  示例代码:

[oracle@localhost]$ cat semtest.c


#include <stdlib.h>

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>

#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!\n", __func__);return;}

typedef struct _PrivInfo
{
    sem_t s1;
    sem_t s2;
    time_t end_time;
}PrivInfo;

static void info_init (PrivInfo* prifo);
static void info_destroy (PrivInfo* prifo);
static void* pthread_func_1 (PrivInfo* prifo);
static void* pthread_func_2 (PrivInfo* prifo);

int main (int argc, char** argv)
{
    pthread_t pt_1 = 0;
    pthread_t pt_2 = 0;
    int ret = 0;
    PrivInfo* prifo = NULL;
    prifo = (PrivInfo* )malloc (sizeof (PrivInfo));

    if (prifo == NULL)
    {
        printf ("[%s]: Failed to malloc priv.\n");
        return -1;
    }

    info_init (prifo);
    ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, prifo);
    if (ret != 0)
    {
        perror ("pthread_1_create:");
    }

    ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, prifo);
    if (ret != 0)
    {
        perror ("pthread_2_create:");
    }

    pthread_join (pt_1, NULL);
    pthread_join (pt_2, NULL);
    info_destroy (prifo);
    return 0;
}

static void info_init (PrivInfo* prifo)
{
    return_if_fail (prifo != NULL);
    prifo->end_time = time(NULL) + 10;
    sem_init (&prifo->s1, 0, 1);
    sem_init (&prifo->s2, 0, 0);
    return;
}

static void info_destroy (PrivInfo* prifo)
{
    return_if_fail (prifo != NULL);
    sem_destroy (&prifo->s1);
    sem_destroy (&prifo->s2);
    free (prifo);
    prifo = NULL;
    return;
}

static void* pthread_func_1 (PrivInfo* prifo)
{
    return_if_fail (prifo != NULL);
    while (time(NULL) < prifo->end_time)
    {
        sem_wait (&prifo->s2);
        printf ("pthread1: pthread1 get the lock.\n");
        sem_post (&prifo->s1);
        printf ("pthread1: pthread1 unlock\n");
        sleep (1);
    }
    return;
}

static void* pthread_func_2 (PrivInfo* prifo)
{
    return_if_fail (prifo != NULL);
    while (time (NULL) < prifo->end_time)
    {
        sem_wait (&prifo->s1);
        printf ("pthread2: pthread2 get the unlock.\n");
        sem_post (&prifo->s2);
        printf ("pthread2: pthread2 unlock.\n");
        sleep (1);
    }
    return;

}


[oracle@localhost]$


也可参考:

Posix线程编程指南(3)

Linux线程同步之条件变量

GitHub 加速计划 / li / linux-dash
10.39 K
1.2 K
下载
A beautiful web dashboard for Linux
最近提交(Master分支:2 个月前 )
186a802e added ecosystem file for PM2 4 年前
5def40a3 Add host customization support for the NodeJS version 4 年前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐