项目介绍

ZLMediaKit是一套高性能的流媒体服务框架,目前支持rtmp/rtsp/hls/http-flv流媒体协议。该项目已支持linux、macos、windows、ios、android平台,支持的编码格式包括H264、AAC、H265(仅rtsp支持H265);采用的模型是多线程IO多路复用非阻塞式编程(linux下采用epoll、其他平台采用select)。

该框架基于C++11开发,避免使用裸指针,减少内存拷贝,代码精简可靠,并发性能优异,在linux平台下,单一进程即可充分利用多核CPU的优势;最大限度的榨干CPU、网卡性能;轻松达到万兆网卡性能极限。同时也能在高性能的同时,做到极低延时,画面秒开。

目前ZLMediaKit经过多次版本迭代,编程模型多次升级优化;已经趋于成熟稳定,也在各种生产环境得到了验证,本文主要讨论ZLMediaKit高性能实现原理以及项目特点。

网络模型对比

不同于SRS的单线程多协程、node.js/redis的单线程、NGINX的多进程模型;ZLMediaKit采用的是单进程多线程模型。那么为什么ZLMediaKit要采用这样的编程模型呢?

作为一个多年的C++服务器后台开发工程师,多年的工作经验告诉我,作为一个服务器程序,对于稳定性要求极高;一个服务器可以性能差点,但是绝不能轻易core dump;服务中断、重启、异常,对于一个线上已运营项目来说结果是灾难性的。那么我们该怎么确保服务器的稳定?目前有以下手段:

  • 单线程模型
  • 单线程+协程
  • 单线程+多进程
  • 多线程+锁
  • 弃用C/C++

采用单线程模型的优点是,服务器简单可靠,不用考虑资源竞争互斥的问题,这样可以比较容易做到高稳定性;采用此模型的典型代表项目有 redis、node.js。但是由于是单线程模型,所以弊端也比较明显;那就是在多核cpu上不能充分利用多核CPU的算力,性能瓶颈主要在于CPU(大家应该有过在redis中执行keys *慢慢等待的经历)。

img

单线程+协程的方案本质上与纯单线程模型无区别,它们的区别主要编程风格上。纯单线程模型使用的是非阻塞式处处回调方式实现高并发,这种模型会有所谓的回调地狱的问题,编程起来会比较麻烦。而单线程+协程的方案是简化编程方式,采用自然的阻塞式编程风格,在协程库内部管理任务调度,本质也是非阻塞的。但是协程库涉及的比较底层,跟系统息息相关,所以跨平台不是很好做,而且设计实现一个协程库门槛较高。SRS采用就是这编程模型,由于协程库的限制,SRS不能在windows上运行。

为了解决上述单线程模型的问题,很多服务器采用单线程多进程的编程模型;在这种模型下,既有单线程模型的简单可靠的特性,又能充分发挥多核CPU的性能,而且某个进程挂了也不会影响其他进程,像NGINX就是这种编程模型;但是这种模型也有其局限性。在这种模型下,会话间是相互隔离的,两个会话可能运行在不同的进程上;这样就导致了会话间通信的困难。比如说A用户连接在服务器A进程上,B用户连接在服务器B进程上;如果两者之间要完成某种数据交互,那么会异常困难,这样必须通过进程间通信来完成。而进程间通信代价和开销比较大,编程起来也比较困难。但是如果会话间无需数据交互(例如http服务器),那么这种模型是特别适合的,所以NGINX作为http服务器也是非常成功的,但是如果是譬如即时聊天的那种需要会话间通信的服务,那么这种开发模型不是很适合。不过现在越来越多的服务都需要支持分布式集群部署,所以单线程多进程方案的缺陷越来越不明显。

由于C/C++是种强类型静态语言,异常处理简单粗暴,动不动就core dump。C/C++的设计理念就是发现错误及早暴露,在某种意义上来说,崩溃也是种好事,因为这样会引起你的重视,让你能及早发现定位并解决问题,而不是把问题拖延到无法解决的时候再暴露给你。但是这么做对一般人来说,C/C++就不是很友好了,人类并不像机器那样严谨,有点疏忽在所难免,况且有些小问题也无伤大雅,并不需要毁灭式的core dump来应对。而且C/C++的学习曲线异常艰难困苦,很多人好几年也不得要领,所以很多人表示纷纷弃坑,转投 go / erlang / node.js之类。

但是C/C++由于其性能优越性,以及历史原因,在某些场景下是不二选择,而且C/C++才是真正的跨平台语言;况且随着智能指针的推出,内存管理不再是难题;而lambad语法的支持,让程序上下文绑定不再困难。随着C++新特性的支持,编译器静态反射机制的完善,现代C++编程愈发简便快捷。ZLMediaKit采用的就是C++11新标准以及相关理念完成的高性能流媒体服务框架。

与上面其它编程模型不同,ZLMediaKit采用的是多线程开发模型;与传统的多线程模型不同;ZLMediaKit采用了C++11的智能指针来做内存管理,在线程切换时可以完美的管理内存在多线程下共享以及其生命周期。同时互斥锁的粒度消减至极致,几乎可以忽略不计。所以采用多线程模型的ZLMediaKit性能损耗极低,每条线程的性能几乎可以媲美单线程模型,同时也可以充分榨干CPU的每一核心性能。

网络模型详述

ZLMediaKit在启动时会根据cpu核心数自动创建若干个epoll实例(非linux平台为select);这些epoll实例都会有一个线程来运行epoll_wait函数来等待事件的触发。

以ZLMediaKit的RTMP服务为例,在创建一个TcpServer时,ZLMediaKit会把这个Tcp服务的监听套接字加入到每一个epoll实例,这样如果收到新的RTMP播放请求,那么多个epoll实例会在内核的调度下,自动选择负载较轻的线程触发accept事件,以下是代码片段:

template <typename SessionType>
void start(uint16_t port, const std::string& host = "0.0.0.0", uint32_t backlog = 1024) {
   start_l<SessionType>(port,host,backlog);
   //自动加入到所有epoll线程监听
   EventPollerPool::Instance().for_each([&](const TaskExecutor::Ptr &executor){
      EventPoller::Ptr poller = dynamic_pointer_cast<EventPoller>(executor);
      if(poller == _poller || !poller){
         return;
      }
      auto &serverRef = _clonedServer[poller.get()];
      if(!serverRef){
      	//绑定epoll实例
         serverRef = std::make_shared<TcpServer>(poller);
      }
      serverRef->cloneFrom(*this);
   });
}


void cloneFrom(const TcpServer &that){
		if(!that._socket){
			throw std::invalid_argument("TcpServer::cloneFrom other with null socket!");
		}
		_sessionMaker = that._sessionMaker;
		//克隆一个相同fd的Socket对象
		_socket->cloneFromListenSocket(*(that._socket));
		_timer = std::make_shared<Timer>(2, [this]()->bool {
			this->onManagerSession();
			return true;
		},_poller);
		this->mINI::operator=(that);
        _cloned = true;
	}

服务器在收到accept事件后,会创建一个TcpSession对象并绑定到该epoll实例(同时把与之对应的peer fd加入到相关epoll监听)。每一个Tcp连接都会对应一个TcpSession对象,在之后客户端与服务器的数据交互中,该TcpSession对象处理一切与之相关的业务数据,并且该对象之后生命周期内的一切事件都会由该epoll线程触发,这样服务器的每个epoll线程都能均匀的分派到合理的客户端数量。以下是服务器accept事件处理逻辑代码片段:

// 接收到客户端连接请求
    virtual void onAcceptConnection(const Socket::Ptr & sock) {
		weak_ptr<TcpServer> weakSelf = shared_from_this();
        //创建一个TcpSession;这里实现创建不同的服务会话实例
		auto sessionHelper = _sessionMaker(weakSelf,sock);
		auto &session = sessionHelper->session();
        //把本服务器的配置传递给TcpSession
        session->attachServer(*this);

        //TcpSession的唯一识别符,可以是guid之类的
        auto sessionId = session->getIdentifier();
        //记录该TcpSession
        if(!SessionMap::Instance().add(sessionId,session)){
            //有同名session,说明getIdentifier生成的标识符有问题
            WarnL << "SessionMap::add failed:" << sessionId;
            return;
        }
        //SessionMap中没有相关记录,那么_sessionMap更不可能有相关记录了;
        //所以_sessionMap::emplace肯定能成功
        auto success = _sessionMap.emplace(sessionId, sessionHelper).second;
        assert(success == true);

        weak_ptr<TcpSession> weakSession(session);
		//会话接收数据事件
		sock->setOnRead([weakSession](const Buffer::Ptr &buf, struct sockaddr *addr){
			//获取会话强引用
			auto strongSession=weakSession.lock();
			if(!strongSession) {
				//会话对象已释放
				return;
			}
            //TcpSession处理业务数据
			strongSession->onRecv(buf);
		});


		//会话接收到错误事件
		sock->setOnErr([weakSelf,weakSession,sessionId](const SockException &err){
		    //在本函数作用域结束时移除会话对象
            //目的是确保移除会话前执行其onError函数
            //同时避免其onError函数抛异常时没有移除会话对象
		    onceToken token(nullptr,[&](){
                //移除掉会话
                SessionMap::Instance().remove(sessionId);
                auto strongSelf = weakSelf.lock();
                if(!strongSelf) {
                    return;
                }
                //在TcpServer对应线程中移除map相关记录
                strongSelf->_poller->async([weakSelf,sessionId](){
                    auto strongSelf = weakSelf.lock();
                    if(!strongSelf){
                        return;
                    }
                    strongSelf->_sessionMap.erase(sessionId);
                });
		    });
			//获取会话强应用
			auto strongSession=weakSession.lock();
            if(strongSession) {
                //触发onError事件回调
				strongSession->onError(err);
			}
		});
	}
 通过上诉描述,我们应该大概了解了ZLMediaKit的网络模型,通过这样的模型基本上能榨干CPU的算力,不过CPU算力如果使用不当 ,也可能白白浪费,使之做一些无用的事物,那么在ZLMediaKit中还有那些技术手段来提高性能呢?我们在下节展开论述。

关闭互斥锁

上一节论述中,我们知道TcpSession是ZLMediaKit中的关键元素,服务器大部分计算都在TcpSession内完成。一个TcpSession由一个epoll实例掌管其生命周期,其他线程不得直接操作该TcpSession对象(必须通过线程切换到对应的epoll线程来完成操作);所以从某种意义上来说TcpSeesion是单线程模型的;所以ZLMediaKit对于TcpSession所对应的网络io操作是无互斥锁保护的,ZLMediaKit作为服务器模式运行,基本上是无锁的;这种情况下,锁对性能的影响几乎可以忽略不计。以下是ZLMediaKit关闭互斥锁的代码片段:

virtual Socket::Ptr onBeforeAcceptConnection(const EventPoller::Ptr &poller){
    	/**
    	 * 服务器模型socket是线程安全的,所以为了提高性能,关闭互斥锁
    	 * Socket构造函数第二个参数即为是否关闭互斥锁
    	 */
		return std::make_shared<Socket>(poller,false);
	}

//Socket对象的构造函数,第二个参数即为是否关闭互斥锁
Socket::Socket(const EventPoller::Ptr &poller,bool enableMutex) :
		_mtx_sockFd(enableMutex),
		_mtx_bufferWaiting(enableMutex),
		_mtx_bufferSending(enableMutex) {
	_poller = poller;
	if(!_poller){
		_poller = EventPollerPool::Instance().getPoller();
	}

    _canSendSock = true;
	_readCB = [](const Buffer::Ptr &buf,struct sockaddr *) {
		WarnL << "Socket not set readCB";
	};
	_errCB = [](const SockException &err) {
		WarnL << "Socket not set errCB:" << err.what();
	};
	_acceptCB = [](Socket::Ptr &sock) {
		WarnL << "Socket not set acceptCB";
	};
	_flushCB = []() {return true;};

	_beforeAcceptCB = [](const EventPoller::Ptr &poller){
		return nullptr;
	};
}

//MutexWrapper对象定义,可以选择是否关闭互斥锁
template <class Mtx = recursive_mutex>
class MutexWrapper {
public:
    MutexWrapper(bool enable){
        _enable = enable;
    }
    ~MutexWrapper(){}

    inline void lock(){
        if(_enable){
            _mtx.lock();
        }
    }
    inline void unlock(){
        if(_enable){
            _mtx.unlock();
        }
    }
private:
    bool _enable;
    Mtx _mtx;
};

规避内存拷贝

传统的多线程模型下,做数据转发会存在线程切换的问题,为了确保线程安全,一般使用内存拷贝来规避该问题;而且对数据进行分包处理也很难做到不使用内存拷贝。但是流媒体这种业务逻辑,可能观看同一个直播的用户是海量的,如果每分发一次就做内存拷贝,那么开销是十分可观的,这将严重拖累服务器性能。

ZLMediaKit在做媒体数据转发时,是不会做内存拷贝的,常规的C++多线程编程很难做到这一点,但是我们在C++11的加持下,利用引用计数,巧妙的解决了多线程内存生命周期管理的问题,以下是RTMP服务器做媒体数据分发规避内存拷贝的代码片段:

void RtmpProtocol::sendRtmp(uint8_t ui8Type, uint32_t ui32StreamId,
        const Buffer::Ptr &buf, uint32_t ui32TimeStamp, int iChunkId){
    if (iChunkId < 2 || iChunkId > 63) {
        auto strErr = StrPrinter << "不支持发送该类型的块流 ID:" << iChunkId << endl;
        throw std::runtime_error(strErr);
    }
	//是否有扩展时间戳
    bool bExtStamp = ui32TimeStamp >= 0xFFFFFF;

    //rtmp头
	BufferRaw::Ptr bufferHeader = obtainBuffer();
	bufferHeader->setCapacity(sizeof(RtmpHeader));
	bufferHeader->setSize(sizeof(RtmpHeader));
	//对rtmp头赋值,如果使用整形赋值,在arm android上可能由于数据对齐导致总线错误的问题
	RtmpHeader *header = (RtmpHeader*) bufferHeader->data();
    header->flags = (iChunkId & 0x3f) | (0 << 6);
    header->typeId = ui8Type;
    set_be24(header->timeStamp, bExtStamp ? 0xFFFFFF : ui32TimeStamp);
    set_be24(header->bodySize, buf->size());
    set_le32(header->streamId, ui32StreamId);
    //发送rtmp头
    onSendRawData(bufferHeader);

    //扩展时间戳字段
	BufferRaw::Ptr bufferExtStamp;
    if (bExtStamp) {
        //生成扩展时间戳
		bufferExtStamp = obtainBuffer();
		bufferExtStamp->setCapacity(4);
		bufferExtStamp->setSize(4);
		set_be32(bufferExtStamp->data(), ui32TimeStamp);
	}

	//生成一个字节的flag,标明是什么chunkId
	BufferRaw::Ptr bufferFlags = obtainBuffer();
	bufferFlags->setCapacity(1);
	bufferFlags->setSize(1);
	bufferFlags->data()[0] = (iChunkId & 0x3f) | (3 << 6);
    
    size_t offset = 0;
	uint32_t totalSize = sizeof(RtmpHeader);
    while (offset < buf->size()) {
        if (offset) {
            //发送trunkId
            onSendRawData(bufferFlags);
            totalSize += 1;
        }
        if (bExtStamp) {
            //扩展时间戳
            onSendRawData(bufferExtStamp);
            totalSize += 4;
        }
        size_t chunk = min(_iChunkLenOut, buf->size() - offset);
        //分发流媒体数据包,此处规避了内存拷贝
        onSendRawData(std::make_shared<BufferPartial>(buf,offset,chunk));
        totalSize += chunk;
        offset += chunk;
    }
    _ui32ByteSent += totalSize;
    if (_ui32WinSize > 0 && _ui32ByteSent - _ui32LastSent >= _ui32WinSize) {
        _ui32LastSent = _ui32ByteSent;
        sendAcknowledgement(_ui32ByteSent);
    }
}

//BufferPartial对象用于rtmp包的chunk大小分片,规避内存拷贝
class BufferPartial : public Buffer {
public:
    BufferPartial(const Buffer::Ptr &buffer,uint32_t offset,uint32_t size){
        _buffer = buffer;
        _data = buffer->data() + offset;
        _size = size;
    }

    ~BufferPartial(){}

    char *data() const override {
        return _data;
    }
    uint32_t size() const override{
        return _size;
    }
private:
    Buffer::Ptr _buffer;
    char *_data;
    uint32_t _size;
};

我们在发送RTP包时也是采用同样的原理来避免内存拷贝。

使用对象循环池

内存开辟销毁是全局互斥的,过多的new/delete 不仅降低程序性能,还会导致内存碎片。ZLMediaKit尽量使用循环池来避免这些问题,以下代码时RTP包循环池使用代码片段:

RtpPacket::Ptr RtpInfo::makeRtp(TrackType type, const void* data, unsigned int len, bool mark, uint32_t uiStamp) {
    uint16_t ui16RtpLen = len + 12;
    uint32_t ts = htonl((_ui32SampleRate / 1000) * uiStamp);
    uint16_t sq = htons(_ui16Sequence);
    uint32_t sc = htonl(_ui32Ssrc);

   	//采用循环池来获取rtp对象
    auto rtppkt = ResourcePoolHelper<RtpPacket>::obtainObj();
    unsigned char *pucRtp = rtppkt->payload;
    pucRtp[0] = '$';
    pucRtp[1] = _ui8Interleaved;
    pucRtp[2] = ui16RtpLen >> 8;
    pucRtp[3] = ui16RtpLen & 0x00FF;
    pucRtp[4] = 0x80;
    pucRtp[5] = (mark << 7) | _ui8PlayloadType;
    memcpy(&pucRtp[6], &sq, 2);
    memcpy(&pucRtp[8], &ts, 4);
    //ssrc
    memcpy(&pucRtp[12], &sc, 4);
    //playload
    memcpy(&pucRtp[16], data, len);

    rtppkt->PT = _ui8PlayloadType;
    rtppkt->interleaved = _ui8Interleaved;
    rtppkt->mark = mark;
    rtppkt->length = len + 16;
    rtppkt->sequence = _ui16Sequence;
    rtppkt->timeStamp = uiStamp;
    rtppkt->ssrc = _ui32Ssrc;
    rtppkt->type = type;
    rtppkt->offset = 16;
    _ui16Sequence++;
    _ui32TimeStamp = uiStamp;
    return rtppkt;
}

设置Socket相关标志

开启TCP_NODELAY后可以提高服务器响应速度,对于一些对延时要求比较敏感的服务(比如ssh服务),开启TCP_NODELAY标记比较重要。但是对于流媒体服务,由于数据是源源不断并且量也比较大,所以关闭TCP_NODELAY可以减少ACK包数量,充分利用带宽资源。

MSG_MORE是另外一个提高网络吞吐量的标记;这个标记的作用是在发送数据时,服务器会缓存一定的数据然后再打包一次性发送出去;而像RTSP这种业务场景,MSG_MORE标记就显得格外合适;因为RTP包一般都很小(小于MTU),通过MSG_MORE标记可以极大减少数据包个数。

ZLMediaKit在处理播放器时,握手期间是开启TCP_NODELAY并且关闭MSG_MORE的,这样做的目的是提高握手期间数据交互的延时,减少链接建立耗时,提高视频打开速度。在握手成功后,ZLMediaKit会关闭TCP_NODELAY并打开MSG_MORE;这样又能减少数据报文个数,提高网络利用率。

批量数据发送

网络编程中,大家应该都用过send/sendto/write函数,但是writev/sendmsg函数应该用的不多。ZLMediaKit采用sendmsg函数来做批量数据发送,这样在网络不是很好或者服务器负载比较高时,可以明显减少系统调用(系统调用开销比较大)次数,提高程序性能。以下是代码片段:

int BufferList::send_l(int fd, int flags,bool udp) {
    int n;
    do {
        struct msghdr msg;
        msg.msg_name = NULL;
        msg.msg_namelen = 0;
        msg.msg_iov = &(_iovec[_iovec_off]);
        msg.msg_iovlen = _iovec.size() - _iovec_off;
        if(msg.msg_iovlen > IOV_MAX){
            msg.msg_iovlen = IOV_MAX;
        }
        msg.msg_control = NULL;
        msg.msg_controllen = 0;
        msg.msg_flags = flags;
        n = udp ? send_iovec(fd,&msg,flags) : sendmsg(fd,&msg,flags);
    } while (-1 == n && UV_EINTR == get_uv_error(true));

    if(n >= _remainSize){
        //全部写完了
        _iovec_off = _iovec.size();
        _remainSize = 0;
        return n;
    }

    if(n > 0){
        //部分发送成功
        reOffset(n);
        return n;
    }

    //一个字节都未发送
    return n;
}

批量线程切换

多线程模型下,流媒体服务器在做媒体数据分发时,肯定要做线程切换。线程切换的目的一是确保线程安全,防止多条线程同时操作某个对象或资源;二是可以充分利用多核算力,防止单线程成为转发性能瓶颈。ZLMediaKit在做媒体转发时,也同样使用到线程切换来实现多线程的数据分发。但是线程切换开销也比较大,如果线程切换次数太多,将严重影响服务器性能。

现在我们假设一个场景:RTMP推流客户端A推送一个直播到服务器,这个直播比较火爆,假设有同时10K个用户正在观看这个直播,那么我们在分发一个RTMP数据包时是否需要最多进行10K次线程切换然后再发送数据?虽然ZLMediaKit的线程切换比较轻量,但是这样频繁的线程切换也是扛不住的。

ZLMediaKit在处理这类问题时,采用批量线程切换来尽量减少线程切换次数。假如说这10K的用户分布在32个cpu核心上,那么ZLMediaKit最多进行32次线程切换,这样ZLMediaKit将大大减少线程切换次数,同时又能使用多线程来分发数据,大大提高网络吞吐量,以下是批量线程切换代码片段:

void emitRead(const T &in){
        LOCK_GUARD(_mtx_map);
        for (auto &pr : _dispatcherMap) {
            auto second = pr.second;
            //批量线程切换
            pr.first->async([second,in](){
                second->emitRead(in);
            },false);
        }
    }

//线程切换后再做遍历
void emitRead(const T &in){
        for (auto it = _readerMap.begin() ; it != _readerMap.end() ;) {
            auto reader = it->second.lock();
            if(!reader){
                it = _readerMap.erase(it);
                --_readerSize;
                onSizeChanged();
                continue;
            }
            //触发数据分发操作
            reader->onRead(in);
            ++it;
        }
	}

采用右值引用拷贝

ZLMediaKit中也尽量使用右值引用拷贝来规避内存拷贝,这里就不展开论述。

其他特性

优化及时推流打开率

有些应用场景需要设备端开始推流,然后APP立即观看的应用场景。传统的rtmp服务器对此应用场景是未作任何优化的,如果APP播放请求在推流尚未建立之前到达,那么将导致APP播放失败,这样视频打开成功率就会降低,用户体验很不好。

ZLMediaKit在针对该应用场景时,做了特别的优化;实现原理如下:

1、收到播放请求时,立即检查是否已经存在的媒体源,如果存在返回播放成功,否则进入第2步。

2、监听对应的媒体源注册事件,同时添加播放超时定时器,并且不回复播放器然后返回。逻辑将进入第3步或第4步。

3、媒体源注册成功,那么立即响应播放器播放成功,同时删除播放超时定时器,并移除媒体注册事件监听。

4、超时定时器触发,响应播放器播放失败,同时删除播放超时定时器,并移除媒体注册事件监听。

使用ZLMediaKit作为流媒体服务器,可以APP播放请求和设备端推流同时进行。

性能测试对比

目前对ZLMediaKit做了一些性能测试,查看地址:benchmark

在测试时发现,ZLMediaKit在负载比较低时,其单线程性能大概是SRS的50%,单条线程大概能支撑5K个播放器,导致这个性能差距的主要原因时由于采用本地轮回网络,网络状况为理想,那么sendmsg批量发送将不起优化左右;而SRS使用了合并写特性(就是缓存300毫秒左右的数据后一次性发送),可以减少系统调用次数;如果负载比较低,以及真实网络环境下,ZLMediaKit单线程性能应该跟SRS差距更小,我们在测试报告中也能发现在客户端比较多时,ZLMediaKit单线程线程性能有比较大的提升。

由于ZLMediaKit支持多线程,可以充分利用多核CPU的性能,在多核服务器上,CPU已经不再是性能瓶颈,为了减少直播延时,目前不打算加入合并写特性。

项目地址

目前ZLMediaKit已经开源,地址为:ZLMediaKit

QQ交流群

542509000

GitHub 加速计划 / li / linux-dash
10.39 K
1.2 K
下载
A beautiful web dashboard for Linux
最近提交(Master分支:2 个月前 )
186a802e added ecosystem file for PM2 4 年前
5def40a3 Add host customization support for the NodeJS version 4 年前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐