OpenCV中人脸识别代码实现
声明:本文代码来源于http://www.cognotics.com/opencv/servo_2007_series/,实现平台为Linux+OpenCV,共分为两部分:人脸检测与人脸识别。本文为后半部分的代码,关于第一部分请参见http://blog.csdn.net/liudekuan/article/details/8560251。不多言,以下给出代码及相关注解
#include <stdio.h>
#include <string.h>
#include "cv.h"
#include "cvaux.h"
#include "highgui.h"
using namespace cv;
//globle variables
int nTrainFaces = 0; // number of trainning images
int nEigens = 0; // number of eigenvalues
IplImage** faceImgArr = 0; // array of face images
CvMat* personNumTruthMat = 0; // array of person numbers
IplImage* pAvgTrainImg = 0; // the average image
IplImage** eigenVectArr = 0; // eigenvectors
CvMat* eigenValMat = 0; // eigenvalues
CvMat* projectedTrainFaceMat = 0; // projected training faces
Function prototypes
void learn();
void recognize();
void doPCA();
void storeTrainingData();
int loadTrainingData(CvMat** pTrainPersonNumMat);
int findNearestNeighbor(float* projectedTestFace);
int loadFaceImgArray(char* filename);
void printUsage();
int main( int argc, char** argv )
{
if((argc != 2) && (argc != 3)){
printUsage();
return -1;
}
if( !strcmp(argv[1], "train" )){
learn();
} else if( !strcmp(argv[1], "test") ){
recognize();
} else {
printf("Unknown command: %s\n", argv[1]);
}
return 0;
}
void printUsage(){
printf("Usage: eigenface <command>\n",
" Valid commands are\n"
" train\n"
" test\n"
);
}
void learn(){
int i;
// load training data
nTrainFaces = loadFaceImgArray("train.txt");
if( nTrainFaces < 2){
fprintf(
stderr,
"Need 2 or more training faces\n"
"Input file contains only %d\n",
nTrainFaces
);
return;
}
// do PCA on the training faces
doPCA();
// project the training images onto the PCA subspace
projectedTrainFaceMat = cvCreateMat(nTrainFaces, nEigens, CV_32FC1);
for(i = 0; i < nTrainFaces; i ++){
cvEigenDecomposite(
faceImgArr[i],
nEigens,
eigenVectArr,
0, 0,
pAvgTrainImg,
projectedTrainFaceMat->data.fl + i*nEigens
);
}
// store the recognition data as an xml file
storeTrainingData();
}
int loadFaceImgArray(char* filename){
FILE* imgListFile = 0;
char imgFilename[512];
int iFace, nFaces = 0;
// open the input file
imgListFile = fopen(filename, "r");
// count the number of faces
while( fgets(imgFilename, 512, imgListFile) ) ++ nFaces;
rewind(imgListFile);
// allocate the face-image array and person number matrix
faceImgArr = (IplImage **)cvAlloc( nFaces*sizeof(IplImage *) );
personNumTruthMat = cvCreateMat( 1, nFaces, CV_32SC1 );
// store the face images in an array
for(iFace=0; iFace<nFaces; iFace++){
//read person number and name of image file
fscanf(imgListFile, "%d %s", personNumTruthMat->data.i+iFace, imgFilename);
// load the face image
faceImgArr[iFace] = cvLoadImage(imgFilename, CV_LOAD_IMAGE_GRAYSCALE);
}
fclose(imgListFile);
return nFaces;
}
void doPCA(){
int i;
CvTermCriteria calcLimit;
CvSize faceImgSize;
// set the number of eigenvalues to use
nEigens = nTrainFaces - 1;
// allocate the eigenvector images
faceImgSize.width = faceImgArr[0]->width;
faceImgSize.height = faceImgArr[0]->height;
eigenVectArr = (IplImage**)cvAlloc(sizeof(IplImage*) * nEigens);
for(i=0; i<nEigens; i++){
eigenVectArr[i] = cvCreateImage(faceImgSize, IPL_DEPTH_32F, 1);
}
// allocate the eigenvalue array
eigenValMat = cvCreateMat( 1, nEigens, CV_32FC1 );
// allocate the averaged image
pAvgTrainImg = cvCreateImage(faceImgSize, IPL_DEPTH_32F, 1);
// set the PCA termination criterion
calcLimit = cvTermCriteria( CV_TERMCRIT_ITER, nEigens, 1);
// compute average image, eigenvalues, and eigenvectors
cvCalcEigenObjects(
nTrainFaces,
(void*)faceImgArr,
(void*)eigenVectArr,
CV_EIGOBJ_NO_CALLBACK,
0,
0,
&calcLimit,
pAvgTrainImg,
eigenValMat->data.fl
);
}
void storeTrainingData(){
CvFileStorage* fileStorage;
int i;
// create a file-storage interface
fileStorage = cvOpenFileStorage( "facedata.xml", 0, CV_STORAGE_WRITE);
// store all the data
cvWriteInt( fileStorage, "nEigens", nEigens);
cvWriteInt( fileStorage, "nTrainFaces", nTrainFaces );
cvWrite(fileStorage, "trainPersonNumMat", personNumTruthMat, cvAttrList(0, 0));
cvWrite(fileStorage, "eigenValMat", eigenValMat, cvAttrList(0,0));
cvWrite(fileStorage, "projectedTrainFaceMat", projectedTrainFaceMat, cvAttrList(0,0));
cvWrite(fileStorage, "avgTrainImg", pAvgTrainImg, cvAttrList(0,0));
for(i=0; i<nEigens; i++){
char varname[200];
sprintf( varname, "eigenVect_%d", i);
cvWrite(fileStorage, varname, eigenVectArr[i], cvAttrList(0,0));
}
//release the file-storage interface
cvReleaseFileStorage( &fileStorage );
}
void recognize(){
int i, nTestFaces = 0; // the number of test images
CvMat* trainPersonNumMat = 0; // the person numbers during training
float* projectedTestFace = 0;
// load test images and ground truth for person number
nTestFaces = loadFaceImgArray("test.txt");
printf("%d test faces loaded\n", nTestFaces);
// load the saved training data
if( !loadTrainingData( &trainPersonNumMat ) ) return;
// project the test images onto the PCA subspace
projectedTestFace = (float*)cvAlloc( nEigens*sizeof(float) );
for(i=0; i<nTestFaces; i++){
int iNearest, nearest, truth;
// project the test image onto PCA subspace
cvEigenDecomposite(
faceImgArr[i],
nEigens,
eigenVectArr,
0, 0,
pAvgTrainImg,
projectedTestFace
);
iNearest = findNearestNeighbor(projectedTestFace);
truth = personNumTruthMat->data.i[i];
nearest = trainPersonNumMat->data.i[iNearest];
printf("nearest = %d, Truth = %d\n", nearest, truth);
}
}
int loadTrainingData(CvMat** pTrainPersonNumMat){
CvFileStorage* fileStorage;
int i;
// create a file-storage interface
fileStorage = cvOpenFileStorage( "facedata.xml", 0, CV_STORAGE_READ );
if( !fileStorage ){
fprintf(stderr, "Can't open facedata.xml\n");
return 0;
}
nEigens = cvReadIntByName(fileStorage, 0, "nEigens", 0);
nTrainFaces = cvReadIntByName(fileStorage, 0, "nTrainFaces", 0);
*pTrainPersonNumMat = (CvMat*)cvReadByName(fileStorage, 0, "trainPersonNumMat", 0);
eigenValMat = (CvMat*)cvReadByName(fileStorage, 0, "eigenValMat", 0);
projectedTrainFaceMat = (CvMat*)cvReadByName(fileStorage, 0, "projectedTrainFaceMat", 0);
pAvgTrainImg = (IplImage*)cvReadByName(fileStorage, 0, "avgTrainImg", 0);
eigenVectArr = (IplImage**)cvAlloc(nTrainFaces*sizeof(IplImage*));
for(i=0; i<nEigens; i++){
char varname[200];
sprintf( varname, "eigenVect_%d", i );
eigenVectArr[i] = (IplImage*)cvReadByName(fileStorage, 0, varname, 0);
}
// release the file-storage interface
cvReleaseFileStorage( &fileStorage );
return 1;
}
int findNearestNeighbor(float* projectedTestFace){
double leastDistSq = DBL_MAX;
int i, iTrain, iNearest = 0;
for(iTrain=0; iTrain<nTrainFaces; iTrain++){
double distSq = 0;
for(i=0; i<nEigens; i++){
float d_i = projectedTestFace[i] -
projectedTrainFaceMat->data.fl[iTrain*nEigens + i];
distSq += d_i*d_i;
}
if(distSq < leastDistSq){
leastDistSq = distSq;
iNearest = iTrain;
}
}
return iNearest;
}
代码解析:
OpenCV实现了基于PCA的特征脸人脸识别方法,相关理论可参考Paul Viola和Michael Jones于2001年发表的《Rapid Object Detection using a Boosted Cascade of SimpleFeatures》。整个算法又分为样本训练和人脸识别两个过程,在上述代码中,分别通过函数learn()与recognize()来实现。在样本训练阶段,将样本库中的人脸图像转换为特征向量表示,并投影到PCA子空间,最终将这些向量数据保存到中间文件facedata.xml中。而在识别阶段,同样将待识别的人脸图像使用PCA子空间的向量表示,通过计算待识别图像的向量与样本中的向量之间的距离,寻找其中最相近的人脸图像,作为识别结果。
需要说明的是,在代码中训练样本图像及待识别的图像分别通过文本文件train.txt和test.txt记录,所用图像均为pgm格式,train.txt及test.txt中的内容如下所示:
其中,在这两个文件中,每一行记录一幅人脸图像。每条记录开始的数字表示人的序号,紧跟其后的则是此照片的存储路径。显然,此例在训练样本时只使用了序号为1,2,4三个人的第一幅照片,而识别时则对这三个人的多幅人脸图像进行了识别。其最终的识别结果如下所示:
nearest表示最相似的样本图像的序号,而Truth则表示待识别图像的序号。当二者相同时,表示正确识别,否则识别错误。
更多推荐
所有评论(0)