一、信号量

  Linux 内核提供了信号量机制,信号量常常用于控制对共享资源的访问。相比于自旋锁,信号量可以使线程进入休眠状态,使用信号量会提高处理器的使用效率。但是,信号量的开销要比自旋锁大,因为信号量使线程进入休眠状态以后会切换线程,切换线程就会有开销。总结一下信号量的特点:
  ①、因为信号量可以使等待资源线程进入休眠状态,因此适用于那些占用资源比较久的场合。
  ②、因此信号量不能用于中断中,因为信号量会引起休眠,中断不能休眠。
  ③、如果共享资源的持有时间比较短,那就不适合使用信号量了,因为频繁的休眠、切换线程引起的开销要远大于信号量带来的优势。

1.1、信号量 API 函数

  Linux 内核使用 semaphore 结构体表示信号量,结构体内容如下所示:

struct semaphore {
	raw_spinlock_t lock;
	unsigned int count;
	struct list_head wait_list;
};

  信号量的 API 函数有:

DEFINE_SEAMPHORE(name)

  定义一个信号量,并且设置信号量的值为 1。

void sema_init(struct semaphore *sem, int val) 

  初始化信号量 sem,设置信号量值为 val。

void down(struct semaphore *sem)

  获取信号量,因为会导致休眠,因此不能在中断中使用。

int down_trylock(struct semaphore *sem);

  尝试获取信号量,如果能获取到信号量就获取,并且返回 0。如果不能就返回非 0,并且不会进入休眠。

int down_interruptible(struct semaphore *sem)

  获取信号量,和 down 类似,只是使用 down 进入休眠状态的线程不能被信号打断。而使用此函数进入休眠以后是可以被信号打断的。

void up(struct semaphore *sem) 

  释放信号量

二、编写驱动程序

2.1 修改设备树文件

ledtest{
	#address-cells = <1>;
	#size-cells = <1>;
	compatible = "ledtest";
	pinctrl-names = "default";
	linux,default-trigger = "input";
	gpios = <&gpio 26 0>;
	status = "okay";
};

2.2、LED 驱动修改

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#define GPIOLED_CNT			1		  	/* 设备号个数 */
#define GPIOLED_NAME		"ledtest"	/* 名字 */
#define LEDOFF 				0			/* 关灯 */
#define LEDON 				1			/* 开灯 */


/* gpioled设备结构体 */
struct gpioled_dev{
	dev_t devid;			/* 设备号 	 */
	struct cdev cdev;		/* cdev 	*/
	struct class *class;	/* 类 		*/
	struct device *device;	/* 设备 	 */
	int major;				/* 主设备号	  */
	int minor;				/* 次设备号   */
	struct device_node	*nd; /* 设备节点 */
	int led_gpio;			/* led所使用的GPIO编号		*/
	struct semaphore sem;	/* 信号量 */
};

struct gpioled_dev gpioled;	/* led设备 */

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int led_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &gpioled; /* 设置私有数据 */

	/* 获取信号量 */
	if (down_interruptible(&gpioled.sem)) { /* 获取信号量,进入休眠状态的进程可以被信号打断 */
		return -ERESTARTSYS;
	}
	return 0;
}

/*
 * @description		: 从设备读取数据 
 * @param - filp 	: 要打开的设备文件(文件描述符)
 * @param - buf 	: 返回给用户空间的数据缓冲区
 * @param - cnt 	: 要读取的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 读取的字节数,如果为负值,表示读取失败
 */
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
	return 0;
}

/*
 * @description		: 向设备写数据 
 * @param - filp 	: 设备文件,表示打开的文件描述符
 * @param - buf 	: 要写给设备写入的数据
 * @param - cnt 	: 要写入的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 写入的字节数,如果为负值,表示写入失败
 */
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
	int retvalue;
	unsigned char databuf[1];
	unsigned char ledstat;
	struct gpioled_dev *dev = filp->private_data;

	retvalue = copy_from_user(databuf, buf, cnt);
	if(retvalue < 0) {
		printk("kernel write failed!\r\n");
		return -EFAULT;
	}

	ledstat = databuf[0];		/* 获取状态值 */

	if(ledstat == LEDON) {	
		gpio_set_value(dev->led_gpio, 0);	/* 打开LED灯 */
	} else if(ledstat == LEDOFF) {
		gpio_set_value(dev->led_gpio, 1);	/* 关闭LED灯 */
	}
	return 0;
}

/*
 * @description		: 关闭/释放设备
 * @param - filp 	: 要关闭的设备文件(文件描述符)
 * @return 			: 0 成功;其他 失败
 */
static int led_release(struct inode *inode, struct file *filp)
{
	struct gpioled_dev *dev = filp->private_data;

	up(&dev->sem);		/* 释放信号量,信号量值加1 */

	return 0;
}

/* 设备操作函数 */
static struct file_operations gpioled_fops = {
	.owner = THIS_MODULE,
	.open = led_open,
	.read = led_read,
	.write = led_write,
	.release = 	led_release,
};

/*
 * @description	: 驱动入口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init led_init(void)
{
	int ret = 0;

	/* 初始化信号量 */
	sema_init(&gpioled.sem, 1);
	
	/* 设置LED所使用的GPIO */
	/* 1、获取设备节点:gpioled */
	gpioled.nd = of_find_node_by_path("/ledtest");
	if(gpioled.nd == NULL) {
		printk("ledtest node not find!\r\n");
		return -EINVAL;
	} else {
		printk("ledtest node find!\r\n");
	}

	/* 2、 获取设备树中的gpio属性,得到LED所使用的LED编号 */
	gpioled.led_gpio = of_get_named_gpio(gpioled.nd, "gpios", 0);
	if(gpioled.led_gpio < 0) {
		printk("can't get gpios");
		return -EINVAL;
	}
	printk("gpios num = %d\r\n", gpioled.led_gpio);


	ret = gpio_direction_output(gpioled.led_gpio, 1);
	if(ret < 0) {
		printk("can't set gpio!\r\n");
	}

	/* 注册字符设备驱动 */
	/* 1、创建设备号 */
	if (gpioled.major) {		/*  定义了设备号 */
		gpioled.devid = MKDEV(gpioled.major, 0);
		register_chrdev_region(gpioled.devid, GPIOLED_CNT, GPIOLED_NAME);
	} else {						/* 没有定义设备号 */
		alloc_chrdev_region(&gpioled.devid, 0, GPIOLED_CNT, GPIOLED_NAME);	/* 申请设备号 */
		gpioled.major = MAJOR(gpioled.devid);	/* 获取分配号的主设备号 */
		gpioled.minor = MINOR(gpioled.devid);	/* 获取分配号的次设备号 */
	}
	printk("gpioled major=%d,minor=%d\r\n",gpioled.major, gpioled.minor);	
	
	/* 2、初始化cdev */
	gpioled.cdev.owner = THIS_MODULE;
	cdev_init(&gpioled.cdev, &gpioled_fops);
	
	/* 3、添加一个cdev */
	cdev_add(&gpioled.cdev, gpioled.devid, GPIOLED_CNT);

	/* 4、创建类 */
	gpioled.class = class_create(THIS_MODULE, GPIOLED_NAME);
	if (IS_ERR(gpioled.class)) {
		return PTR_ERR(gpioled.class);
	}

	/* 5、创建设备 */
	gpioled.device = device_create(gpioled.class, NULL, gpioled.devid, NULL, GPIOLED_NAME);
	if (IS_ERR(gpioled.device)) {
		return PTR_ERR(gpioled.device);
	}
	
	return 0;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit led_exit(void)
{
	/* 注销字符设备驱动 */
	cdev_del(&gpioled.cdev);/*  删除cdev */
	unregister_chrdev_region(gpioled.devid, GPIOLED_CNT); /* 注销设备号 */

	device_destroy(gpioled.class, gpioled.devid);
	class_destroy(gpioled.class);
}

module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zsx");

2.3、编写测试APP

  测试 APP 使用https://blog.csdn.net/xxxx123041/article/details/120421290中的 App.c 即可。

三、运行测试

  将编译出来的 led.ko文件拷贝到/lib/modules/5.10.17-v7l+/ 目录中,输入如下命令加载 led.ko 驱动模块:

sudo depmod //第一次加载驱动的时候需要运行此命令
sudo modprobe ledtest//加载驱动
dmesg //查看模块打印信息

  驱动加载成功以后会自动在/dev 目录下创建设备节点文件/dev/ledtest。驱动加载成功以后就可以使用 App 软件来测试驱动是否工作正常,输入如下命令以后台运行模式打开 LED 灯,“&”表示在后台运行 App 这个软件:

./App /dev/ledtest 1& //打开 LED 灯

  输出了“App running times:1”和“App running times:2”,这就是模拟 25S 占用,说明 App 这个软件正在使用 LED 灯。此时再输入如下命令关闭 LED 灯:

./App /dev/ledtest 0&//关闭 LED 灯

  注意两个命令都是运行在后台,第一条命令先获取到信号量,因此可以操作 LED 灯,将LED 灯打开,并且占有 25S。第二条命令因为获取信号量失败而进入休眠状态,等待第一条命令运行完毕并释放信号量以后才拥有 LED 灯使用权,将 LED 灯关闭。

GitHub 加速计划 / li / linux-dash
10.39 K
1.2 K
下载
A beautiful web dashboard for Linux
最近提交(Master分支:2 个月前 )
186a802e added ecosystem file for PM2 4 年前
5def40a3 Add host customization support for the NodeJS version 4 年前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐