一:需重定义神经网络继续训练的方法

1.训练代码

import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32) 
y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")

y=weight*x_data+biases

loss=tf.reduce_mean(tf.square(y-y_data)) #loss
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)


init=tf.global_variables_initializer() 
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
    sess.run(train)
    saver.save(sess,"./save_mode",global_step=step) #保存
    print("当前进行:",step)

 

第一次训练截图:

 

2.恢复上一次的训练

import numpy as np

import tensorflow as tf

sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))

print(sess.run("w:0"),sess.run("b:0"))



graph=tf.get_default_graph() 
weight=graph.get_tensor_by_name("w:0") 
biases=graph.get_tensor_by_name("b:0")


x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
y=weight*x_data+biases


loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
    sess.run(train)
    saver.save(sess,r"./save_new_mode",global_step=step)
    print("当前进行:",step," ",sess.run(weight),sess.run(biases))

 

使用上次保存下的数据进行继续训练和保存:

 

#最后要提一下的是:

checkpoint文件

meta保存了TensorFlow计算图的结构信息

datat保存每个变量的取值

index保存了 表

加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的

这个方法需要重新定义神经网络

二:不需要重新定义神经网络的方法:

在上面训练的代码中加入:tf.add_to_collection("name",参数)

import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32)

y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")
y=weight*x_data+biases

loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)

tf.add_to_collection("new_way",train)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)

for step in range(10):
    sess.run(train)
    saver.save(sess,"./save_mode",global_step=step)
    print("当前进行:",step)

 

在下面的载入代码中加入:tf.get_collection("name"),就可以直接使用了

 

import numpy as np
import tensorflow as tf
sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))
print(sess.run("w:0"),sess.run("b:0"))
graph=tf.get_default_graph()
weight=graph.get_tensor_by_name("w:0")
biases=graph.get_tensor_by_name("b:0")

y=tf.get_collection("new_way")[0]

saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
    sess.run(y)
    saver.save(sess,r"./save_new_mode",global_step=step)
    print("当前进行:",step," ",sess.run(weight),sess.run(biases))

 

总的来说,下面这种方法好像是要便利一些

 

GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:2 个月前 )
a49e66f2 PiperOrigin-RevId: 663726708 2 个月前
91dac11a This test overrides disabled_backends, dropping the default value in the process. PiperOrigin-RevId: 663711155 2 个月前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐