tensorflow学习笔记(十五): variable scope
variable scope
tensorflow 为了更好的管理变量,提供了variable scope机制
官方解释:
Variable scope object to carry defaults to provide to get_variable.
Many of the arguments we need for get_variable in a variable store are most easily handled with a context. This object is used for the defaults.
Attributes:
- name: name of the current scope, used as prefix in get_variable.
- initializer: 传给get_variable的默认initializer.如果get_variable的时候指定了initializer,那么将覆盖这个默认的initializer.
- regularizer: 传给get_variable的默认regulizer.
- reuse: Boolean or None, setting the reuse in get_variable.
- caching_device: string, callable, or None: the caching device passed to get_variable.
- partitioner: callable or None: the partitioner passed to get_variable.
- custom_getter: default custom getter passed to get_variable.
- name_scope: The name passed to tf.name_scope.
- dtype: default type passed to get_variable (defaults to DT_FLOAT).
regularizer
参数的作用是给在本variable_scope
下创建的weights
加上正则项.这样我们就可以不同variable_scope
下的参数加不同的正则项了.
可以看出,用variable scope管理get_varibale是很方便的
如何确定 get_variable 的 prefixed name
首先, variable scope是可以嵌套的:
with variable_scope.variable_scope("tet1"):
var3 = tf.get_variable("var3",shape=[2],dtype=tf.float32)
print var3.name
with variable_scope.variable_scope("tet2"):
var4 = tf.get_variable("var4",shape=[2],dtype=tf.float32)
print var4.name
#输出为****************
#tet1/var3:0
#tet1/tet2/var4:0
#*********************
get_varibale.name 以创建变量的 scope
作为名字的prefix
def te2():
with variable_scope.variable_scope("te2"):
var2 = tf.get_variable("var2",shape=[2], dtype=tf.float32)
print var2.name
def te1():
with variable_scope.variable_scope("te1"):
var1 = tf.get_variable("var1", shape=[2], dtype=tf.float32)
return var1
return te1() #在scope te2 内调用的
res = te2()
print res.name
#输出*********************
#te2/var2:0
#te2/te1/var1:0
#************************
观察和上个程序的不同
def te2():
with variable_scope.variable_scope("te2"):
var2 = tf.get_variable("var2",shape=[2], dtype=tf.float32)
print var2.name
def te1():
with variable_scope.variable_scope("te1"):
var1 = tf.get_variable("var1", shape=[2], dtype=tf.float32)
return var1
return te1() #在scope te2外面调用的
res = te2()
print res.name
#输出*********************
#te2/var2:0
#te1/var1:0
#************************
还有需要注意一点的是tf.variable_scope("name")
与 tf.variable_scope(scope)
的区别,看下面代码
代码1
import tensorflow as tf
with tf.variable_scope("scope"):
tf.get_variable("w",shape=[1])#这个变量的name是 scope/w
with tf.variable_scope("scope"):
tf.get_variable("w", shape=[1]) #这个变量的name是 scope/scope/w
# 这两个变量的名字是不一样的,所以不会产生冲突
代码2
import tensorflow as tf
with tf.variable_scope("yin"):
tf.get_variable("w",shape=[1])
scope = tf.get_variable_scope()#这个变量的name是 scope/w
with tf.variable_scope(scope):#这种方式设置的scope,是用的外部的scope
tf.get_variable("w", shape=[1])#这个变量的name也是 scope/w
# 两个变量的名字一样,会报错
共享变量
共享变量的前提是,变量的名字是一样的,变量的名字是由变量名
和其scope
前缀一起构成, tf.get_variable_scope().reuse_variables()
是允许共享当前scope
下的所有变量。reused variables
可以看同一个节点
with tf.variable_scope("level1"):
tf.get_variable("w",shape=[1])
scope = tf.get_variable_scope()
with tf.variable_scope("level2"):
tf.get_variable("w", shape=[1])
with tf.variable_scope("level1", reuse=True): #即使嵌套的variable_scope也会被reuse
tf.get_variable("w",shape=[1])
scope = tf.get_variable_scope()
with tf.variable_scope("level2"):
tf.get_variable("w", shape=[1])
其它
tf.get_variable_scope()
:获取当前scope
tf.get_variable_scope().reuse_variables()
共享变量
更多推荐
所有评论(0)