如何理解TensorFlow中的batch和minibatch
tensorflow
一个面向所有人的开源机器学习框架
项目地址:https://gitcode.com/gh_mirrors/te/tensorflow
免费下载资源
·
转自 http://hp.stuhome.net/index.php/2016/09/20/tensorflow_batch_minibatch/
原文如下:
在刚开始学习使用TF的过程中,我不是很理解什么是“batch”。也经常有人问,到底minibatch是干什么的?
然而这是一个在TF中,或者说很多DL的框架中很常见的词。
深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。
- 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。
- 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。
Michael Nielsen在这一章节也有解释,mini-batch是什么,为什么有这个东西。
Deep Learning的这一章节的5.9小节也有解释,还给出了batch的典型值。
结合上面给出的中文解释,再看这两个小节,应该会对batch有所理解。
GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:2 个月前 )
a49e66f2
PiperOrigin-RevId: 663726708
2 个月前
91dac11a
This test overrides disabled_backends, dropping the default
value in the process.
PiperOrigin-RevId: 663711155
2 个月前
更多推荐
已为社区贡献9条内容
所有评论(0)