关于什么是 LSTM 我就不详细阐述了,吴恩达老师视频课里面讲的很好,我大概记录了课上的内容在吴恩达《序列模型》笔记一,网上也有很多写的好的解释,比如:LSTM入门理解LSTM网络

然而,理解挺简单,上手写的时候还是遇到了很多的问题,网上大部分的博客都没有讲清楚 cell 参数的设置,在我看了N多篇文章后终于搞明白了,写出来让大家少走一些弯路吧!
在这里插入图片描述
如上图是一个LSTM的单元,可以应用到多种RNN结构中,常用的应该是 one-to-manymany-to-many
在这里插入图片描述
在这里插入图片描述
下面介绍 many-to-many 这种结构:

  1. batch_size:批度训练大小,即让 batch_size 个句子同时训练。
  2. time_steps:时间长度,即句子的长度
  3. embedding_size:组成句子的单词的向量长度(embedding size)
  4. hidden_size:隐藏单元数,一个LSTM结构是一个神经网络(如上图就是一个LSTM单元),每个小黄框是一个神经网络,小黄框的隐藏单元数就是hidden_size,那么这个LSTM单元就有 4*hidden_size 个隐藏单元。
  5. 每个LSTM单元的输出 C、h,都是向量,他们的长度都是当前 LSTM 单元的 hidden_size。
  6. n_words:语料库中单词个数。

实现方式一:

import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn

def add_layer(inputs, in_size, out_size, activation_function=None):  # 单层神经网络
  weights = tf.Variable(tf.random_normal([in_size, out_size]))
  baises = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  wx_b = tf.matmul(inputs, weights) + baises
  if activation_function is None:
    outputs = wx_b
  else:
    outputs = activation_function(wx_b)
  return outputs
  
n_words = 15
embedding_size = 8
hidden_size = 8  # 一般hidden_size和embedding_size是相同的
batch_size = 3
time_steps = 5

w = tf.Variable(tf.random_normal([n_words, embedding_size], stddev=0.01))  # 模拟参数 W
sentence = tf.Variable(np.arange(15).reshape(batch_size, time_step, 1))    # 模拟训练的句子:3条句子,每个句子5个单词  shape(3,5,1)
input_s = tf.nn.embedding_lookup(w, sentence)  # 将单词映射到向量:每个单词变成了size为8的向量  shape=(3,5,1,8)
input_s = tf.reshape(input_s, [-1, 5, 8])        # shape(3,5,8)

with tf.name_scope("LSTM"):  # trust
    lstm_cell = rnn.BasicLSTMCell(hidden_size, state_is_tuple=True, name='lstm_layer') 
    h_0 = tf.zeros([batch_size, embedding_size])  # shape=(3,8)
    c_0 = tf.zeros([batch_size, embedding_size])  # shape=(3,8)
    state = rnn.LSTMStateTuple(c=c_0, h=h_0)      # 设置初始状态
    outputs = []
    for i in range(time_steps):  # 句子长度
        if i > 0: tf.get_variable_scope().reuse_variables()  # 名字相同cell使用的参数w就一样,为了避免重名引起别的的问题,设置一下变量重用
        output, state = lstm_cell(input_s[:, i, :], state)     # output:[batch_size,embedding_size]  shape=(3,8)
        outputs.append(output)     # outputs:[TIME_STEP,batch_size,embedding_size]  shape=(5,3,8)
    path = tf.concat(outputs, 1)   # path:[batch_size,embedding_size*TIME_STEP]   shape=(3, 40)
    path_embedding = add_layer(path, time_step * embedding_size, embedding_size)  # path_embedding:[batch_size, embedding_size]

with tf.Session() as s:
    s.run(tf.global_variables_initializer())
    # 因为使用的参数数量都还比较小,打印一些变量看看就能明白是怎么操作的
    print(s.run(outputs))
    print(s.run(path_embedding))

比如一批训练64句话,每句话20个单词,每个词向量长度为200,隐藏层单元个数为128
那么训练一批句子,输入的张量维度是[64,20,200],ht,ct​ 的维度是[128],那么LSTM单元参数矩阵的维度是[128+200,4x128],
在时刻1,把64句话的第一个单词作为输入,即输入一个[64,200]的矩阵,由于会和 ht 进行concat,输入矩阵变成了[64,200+128],输入矩阵会和参数矩阵[200+128,4x128]相乘,输出为[64,4x128],也就是每个黄框的输出为[64,128],黄框之间会进行一些操作,但不改变维度,输出依旧是[64,128],即每个句子经过LSTM单元后,输出的维度是128,所以每个LSTM输出的都是向量,包括Ct,ht,所以它们的长度都是当前LSTM单元的hidden_size 。那么我们就知道cell_output的维度为[64,128]
之后的时刻重复刚才同样的操作,那么outputs的维度是[20,64,128].
softmax相当于全连接层,将outputs映射到vocab_size个单词上,进行交叉熵误差计算。
然后根据误差更新LSTM参数矩阵和全连接层的参数。

实现方式二:

测试数据链接:https://pan.baidu.com/s/1j9sgPmWUHM5boM5ekj3Q2w 提取码:go3f

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

data = pd.read_excel("seq_data.xlsx")  # 读取序列数据
data = data.values[1:800]   # 取前800个
normalize_data = (data - np.mean(data)) / np.std(data)  # 标准化数据
s = np.std(data)
m = np.mean(data)
time_step = 96   # 序列段长度
rnn_unit = 8     # 隐藏层节点数目
lstm_layers = 2  # cell层数
batch_size = 7   # 序列段批处理数目
input_size = 1   # 输入维度
output_size = 1  # 输出维度
lr = 0.006       # 学习率

train_x, train_y = [], []
for i in range(len(data) - time_step - 1):
    x = normalize_data[i:i + time_step]
    y = normalize_data[i + 1:i + time_step + 1]
    train_x.append(x.tolist())
    train_y.append(y.tolist())
X = tf.placeholder(tf.float32, [None, time_step, input_size])  # shape(?,time_step, input_size)
Y = tf.placeholder(tf.float32, [None, time_step, output_size])  # shape(?,time_step, out_size)
weights = {'in': tf.Variable(tf.random_normal([input_size, rnn_unit])),
           'out': tf.Variable(tf.random_normal([rnn_unit, 1]))}
biases = {'in': tf.Variable(tf.constant(0.1, shape=[rnn_unit, ])),
          'out': tf.Variable(tf.constant(0.1, shape=[1, ]))}
def lstm(batch):
    w_in = weights['in']
    b_in = biases['in']
    input = tf.reshape(X, [-1, input_size])
    input_rnn = tf.matmul(input, w_in) + b_in
    input_rnn = tf.reshape(input_rnn, [-1, time_step, rnn_unit])
    cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(rnn_unit) for i in range(lstm_layers)])
    init_state = cell.zero_state(batch, dtype=tf.float32)
    output_rnn, final_states = tf.nn.dynamic_rnn(cell, input_rnn, initial_state=init_state, dtype=tf.float32)
    output = tf.reshape(output_rnn, [-1, rnn_unit])
    w_out = weights['out']
    b_out = biases['out']
    pred = tf.matmul(output, w_out) + b_out
    return pred, final_states
    
def train_lstm():
    global batch_size
    with tf.variable_scope("sec_lstm"):
        pred, _ = lstm(batch_size)
    loss = tf.reduce_mean(tf.square(tf.reshape(pred, [-1]) - tf.reshape(Y, [-1])))
    train_op = tf.train.AdamOptimizer(lr).minimize(loss)
    saver = tf.train.Saver(tf.global_variables())
    loss_list = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(100):  # We can increase the number of iterations to gain better result.
            start = 0
            end = start + batch_size
            while (end < len(train_x)):
                _, loss_ = sess.run([train_op, loss], feed_dict={X: train_x[start:end], Y: train_y[start:end]})
                start += batch_size
                end = end + batch_size
            loss_list.append(loss_)
            if i % 10 == 0:
                print("Number of iterations:", i, " loss:", loss_list[-1])
                if i > 0 and loss_list[-2] > loss_list[-1]:saver.save(sess, 'model_save1\\modle.ckpt')
        # I run the code in windows 10,so use  'model_save1\\modle.ckpt'
        # if you run it in Linux,please use  'model_save1/modle.ckpt'
        print("The train has finished")
        
train_lstm()

def prediction():
    with tf.variable_scope("sec_lstm", reuse=tf.AUTO_REUSE):
        pred, _ = lstm(1)
    saver = tf.train.Saver(tf.global_variables())
    with tf.Session() as sess:
        saver.restore(sess, 'model_save1\\modle.ckpt')
        # I run the code in windows 10,so use  'model_save1\\modle.ckpt'
        # if you run it in Linux,please use  'model_save1/modle.ckpt'
        predict = []
        for i in range(0, np.shape(train_x)[0]):
            next_seq = sess.run(pred, feed_dict={X: [train_x[i]]})
            predict.append(next_seq[-1])
        plt.figure()
        plt.plot(list(range(len(data))), data, color='b')
        plt.plot(list(range(time_step + 1, np.shape(train_x)[0] + 1 + time_step)), [value * s + m for value in predict],color='r')
        plt.show()
        
prediction()

参考文章:

基于TensorFlow构建LSTM
TensorFlow实战:LSTM的结构与cell中的参数

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐