tensorflow和tensorflow2.0控制显存
·
tensorflow和tensorflow2.0控制显存
下面的方法可以控制tensorflow或keras实现显存自适应。
if tf.__version__.startswith('1.'): # tensorflow 1
config = tf.ConfigProto() # allow_soft_placement=True
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
else: # tensorflow 2
tf.config.gpu.set_per_process_memory_growth(enabled=True)
第一个方法用于控制tensorflow 1.x版本使用自适应显存,避免显存独占。第二个方法用于控制tensorflow 2.x 使用自适应显存。
原文地址:https://doit-space.blog.csdn.net/article/details/102911328
新一代开源开发者平台 GitCode,通过集成代码托管服务、代码仓库以及可信赖的开源组件库,让开发者可以在云端进行代码托管和开发。旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。
更多推荐



所有评论(0)