Tensorflow卷积操作tf.nn.conv2d的理解
函数定义
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
功能:在给定4-D 输入和fliters的情况下,计算二维卷积。
input的shape: [batch, in_height, in_width, in_channels]
filter的shape: [filter_height, filter_width, in_channels, out_channels]
计算过程如下:
(1)展平filter成如下2-D matrix,其shape: [filter_height * filter_width * in_channels, output_channels]
(2)从input tensor中提取patches构成一个virtual tensor, 其shape: [batch, out_height, out_width, filter_height * filter_width * in_channels]
(3)对于每一个patch, 右乘上(1)中的filter matrix。即[batch, out_height, out_width, filter_height * filter_width * in_channels] x [filter_height * filter_width * in_channels, output_channels],其结果的shape就是[batch, out_height, out_width, output_channels]。
【注:必须有 strides[0] = strides[3] = 1】。绝大多数情况下,水平的stride和竖直的stride一样,即strides = [1, stride, stride, 1]。
输出结果的shape计算:
‘SAME’ 类型的padding,其输出的height和width计算如下:
out_height = ceil(float(in_height) / float(strides[1])) ceil:向上取整
out_width = ceil(float(in_width) / float(strides[2]))
‘VALID’类型的padding, 其输出的height和width计算如下:
out_height = ceil(float(in_height – filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width – filter_width + 1) / float(strides[2]))
【注:tensorflow中的卷积,严格上来说是cross-correlation,而不是卷积。因为在计算的过程中,没有对filter进行翻转,而严格的卷积计算是需要对filter进行翻转的!!!】
代码验证
tensorflow中的tf.nn.conv2d函数,实际上相当于用filter,以一定的步长stride在image上进行滑动,计算重叠部分的内积和,即为卷积结果。下面从定义出发对tf.nn.conv2d函数的功能进行验证:
# -*- coding: utf-8 -*-
from __future__ import division
import tensorflow as tf
import numpy as np
import math
import pandas as pd
input_arr = np.zeros((12, 15), dtype=np.float32)
number = 0
for row_idx in range(input_arr.shape[0]):
for col_idx in range(input_arr.shape[1]):
input_arr[row_idx][col_idx] = number
number += 1
number = 6
w_arr = np.zeros((2, 3), dtype=np.float32)
for row_idx in range(w_arr.shape[0]):
for col_idx in range(w_arr.shape[1]):
w_arr[row_idx][col_idx] = number
number -= 1
stride = [1, 1, 1, 1]
# 从卷积的定义【实际上不是卷积,而是cross-correlation】进行计算验证---对VALID类型卷积进行验证
res_shape_0 = int(math.ceil((input_arr.shape[0] - w_arr.shape[0] + 1) / stride[1]))
res_shape_1 = int(math.ceil((input_arr.shape[1] - w_arr.shape[1] + 1) / stride[2]))
validation_res = np.zeros(shape=(res_shape_0, res_shape_1), dtype=np.float32)
for row_idx in range(validation_res.shape[0]):
for col_idx in range(validation_res.shape[1]):
patch = input_arr[row_idx:row_idx+w_arr.shape[0], col_idx:col_idx+w_arr.shape[1]]
# 这里的 * 实际上代表的是点积,即对应元素位置相乘
res = np.sum(patch * w_arr)
validation_res[row_idx][col_idx] = res
print('result of convolution from its definition: validation_res')
print validation_res
pd.DataFrame(validation_res).to_csv('Results/validation_res.csv', index=False, header=False)
input_arr = np.reshape(input_arr, [1, input_arr.shape[0], input_arr.shape[1], 1])
w_arr = np.reshape(w_arr, [w_arr.shape[0], w_arr.shape[1], 1, 1])
# 相当于要输入的图片,shape: [1, 12, 15, 1]
net_in = tf.constant(value=input_arr, dtype=tf.float32)
# 相当于filter, shape: [2, 3, 1, 1]
W = tf.constant(value=w_arr, dtype=tf.float32)
# tensorflow卷积的计算结果:
# valid卷积结果, shape: [1, 11, 13, 1]
result_conv_valid = tf.nn.conv2d(net_in, W, stride, 'VALID', True)
# same卷积结果, shape: [1, 12, 15, 1]
result_conv_same = tf.nn.conv2d(net_in, W, stride, 'SAME', True)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
valid_conv_res = sess.run(result_conv_valid)
same_conv_res = sess.run(result_conv_same)
sess.close()
print valid_conv_res.shape
valid_conv_res = np.reshape(valid_conv_res, [valid_conv_res.shape[1], valid_conv_res.shape[2]])
same_conv_res = np.reshape(same_conv_res, [same_conv_res.shape[1], same_conv_res.shape[2]])
print('tensorflow conv res: valid_conv_res')
print valid_conv_res
pd.DataFrame(valid_conv_res).to_csv('Results/conv_res.csv', index=False, header=False)
pd.DataFrame(same_conv_res).to_csv('Results/result_conv_same.csv', index=False, header=False)
上面代码,只针对valid卷积类型进行了验证,对same的卷积类型没有验证【same类型的卷积,其padding方式还不懂,求懂的高手指教】。计算结果保存到了相应的csv文件中。
(1)Tensorflow valid类型卷积计算结果:
(2)Tensorflow same类型卷积计算结果:
(3)从卷积定义出发,valid类型卷积计算结果:
可以看出,其验证结果是正确的。并且same和valid的卷积结果,除边缘部分外,其余的值都是一样的。
更多推荐
所有评论(0)