tensorflow 中对 tf.estimator 分配 GPU 方法
tensorflow
一个面向所有人的开源机器学习框架
项目地址:https://gitcode.com/gh_mirrors/te/tensorflow
免费下载资源
·
注:本文适用于Linux环境的操作。
1. 指定使用哪一块 GPU:
先查找有多少块 GPU,并且获得设备编号:
$ nvidia-smi
在代码执行指定使用哪块GPU:
CUDA_VISIBLE_DEVICES=0 ./myapp
指定使用第0块或者第0,1块GPU:
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
2 在tf.estimator() 控制GPU资源使用率:
session_config = tf.ConfigProto(log_device_placement=True)
session_config.gpu_options.per_process_gpu_memory_fraction = 0.5
run_config = tf.estimator.RunConfig().replace(session_config=session_config)
# Instantiate Estimator
nn = tf.estimator.Estimator(model_fn=model_fn, config=run_config, params=model_params)
3 tf.Config() 还可以这样用:
356 session_config = tf.ConfigProto(
log_device_placement=True
357 inter_op_parallelism_threads=0,
358 intra_op_parallelism_threads=0,
359 allow_soft_placement=True)
360
361 #lingfeng
362 session_config.gpu_options.allow_growth = True
363 session_config.gpu_options.allocator_type = 'BFC'
具体解释
log_device_placement=True
- 设置为True时,会打印出TensorFlow使用了那种操作
inter_op_parallelism_threads=0
- 设置线程一个操作内部并行运算的线程数,比如矩阵乘法,如果设置为0,则表示以最优的线程数处理
intra_op_parallelism_threads=0
- 设置多个操作并行运算的线程数,比如 c = a + b,d = e + f . 可以并行运算
allow_soft_placement=True
- 有时候,不同的设备,它的cpu和gpu是不同的,如果将这个选项设置成True,那么当运行设备不满足要求时,会自动分配GPU或者CPU。
参考代码:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import sys
import tempfile
# Import urllib
from six.moves import urllib
import numpy as np
import tensorflow as tf
FLAGS = None
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# 开启loggging.
tf.logging.set_verbosity(tf.logging.INFO)
# 定义下载数据集.
def maybe_download(train_data, test_data, predict_data):
"""Maybe downloads training data and returns train and test file names."""
if train_data:
train_file_name = train_data
else:
train_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"http://download.tensorflow.org/data/abalone_train.csv",
train_file.name)
train_file_name = train_file.name
train_file.close()
print("Training data is downloaded to %s" % train_file_name)
if test_data:
test_file_name = test_data
else:
test_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"http://download.tensorflow.org/data/abalone_test.csv", test_file.name)
test_file_name = test_file.name
test_file.close()
print("Test data is downloaded to %s" % test_file_name)
if predict_data:
predict_file_name = predict_data
else:
predict_file = tempfile.NamedTemporaryFile(delete=False)
urllib.request.urlretrieve(
"http://download.tensorflow.org/data/abalone_predict.csv",
predict_file.name)
predict_file_name = predict_file.name
predict_file.close()
print("Prediction data is downloaded to %s" % predict_file_name)
return train_file_name, test_file_name, predict_file_name
def model_fn(features, labels, mode, params):
"""Model function for Estimator."""
# Connect the first hidden layer to input layer
# (features["x"]) with relu activation
first_hidden_layer = tf.layers.dense(features["x"], 10, activation=tf.nn.relu)
# Connect the second hidden layer to first hidden layer with relu
second_hidden_layer = tf.layers.dense(
first_hidden_layer, 10, activation=tf.nn.relu)
# Connect the output layer to second hidden layer (no activation fn)
output_layer = tf.layers.dense(second_hidden_layer, 1)
# Reshape output layer to 1-dim Tensor to return predictions
predictions = tf.reshape(output_layer, [-1])
# Provide an estimator spec for `ModeKeys.PREDICT`.
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions={"ages": predictions})
# Calculate loss using mean squared error
loss = tf.losses.mean_squared_error(labels, predictions)
# Calculate root mean squared error as additional eval metric
eval_metric_ops = {
"rmse": tf.metrics.root_mean_squared_error(
tf.cast(labels, tf.float64), predictions)
}
optimizer = tf.train.GradientDescentOptimizer(
learning_rate=params["learning_rate"])
train_op = optimizer.minimize(
loss=loss, global_step=tf.train.get_global_step())
# Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.
return tf.estimator.EstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
# 创建main()函数,加载train/test/predict数据集.
def main(unused_argv):
# Load datasets
abalone_train, abalone_test, abalone_predict = maybe_download(
FLAGS.train_data, FLAGS.test_data, FLAGS.predict_data)
# Training examples
training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=abalone_train, target_dtype=np.int, features_dtype=np.float64)
# Test examples
test_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=abalone_test, target_dtype=np.int, features_dtype=np.float64)
# Set of 7 examples for which to predict abalone ages
prediction_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=abalone_predict, target_dtype=np.int, features_dtype=np.float64)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
shuffle=True)
LEARNING_RATE = 0.1
model_params = {"learning_rate": LEARNING_RATE}
session_config = tf.ConfigProto(log_device_placement=True)
session_config.gpu_options.per_process_gpu_memory_fraction = 0.5
run_config = tf.estimator.RunConfig().replace(session_config=session_config)
# Instantiate Estimator
nn = tf.estimator.Estimator(model_fn=model_fn, config=run_config, params=model_params)
print("training---")
nn.train(input_fn=train_input_fn, steps=5000)
# Score accuracy
test_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(test_set.data)},
y=np.array(test_set.target),
num_epochs=1,
shuffle=False)
ev = nn.evaluate(input_fn=test_input_fn)
print("Loss: %s" % ev["loss"])
print("Root Mean Squared Error: %s" % ev["rmse"])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--train_data", type=str, default="", help="Path to the training data.")
parser.add_argument(
"--test_data", type=str, default="", help="Path to the test data.")
parser.add_argument(
"--predict_data",
type=str,
default="",
help="Path to the prediction data.")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:2 个月前 )
a49e66f2
PiperOrigin-RevId: 663726708
2 个月前
91dac11a
This test overrides disabled_backends, dropping the default
value in the process.
PiperOrigin-RevId: 663711155
2 个月前
更多推荐
已为社区贡献5条内容
所有评论(0)