首先使用

from pytorch_pretrained_bert import BertTokenizer, BertModel

model = BertModel.from_pretrained(--bert_model)的时候

 

1、在一个程序中,多次进行

all_hidden_states,encoded_main = model(input_ids=main_x, attention_mask=main_mask),多次加载GPU,原来的也不释放。

 

2.后改用from transformers import BertModel, get_linear_schedule_with_warmup,BertConfig

self.model_config = BertConfig.from_pretrained('bert-base-chinese',)

self.model_config.output_hidden_states = True

self.bert = BertModel.from_pretrained('bert-base-chinese'config=self.model_config)

然后使用bert后几层进行处理:

vector, pooler,enc_layers = self.bert(input_ids=main_x, attention_mask=main_mask)
    #vector, pooler, all_hidden_states = model(input_ids_1_tensor)
    #print("AAAA",len(last_hidden_states), last_hidden_states[0].size()) 
    #encoded_main = torch.cat([t.unsqueeze(-1) for t in last_hidden_states[-4:]], 3).sum(-1)
    
    max_seq_length = len(enc_layers[0][0])

    batch_tokens = []
    for batch_i in range(len(enc_layers[0])):
        token_embeddings = []

        for token_i in range(max_seq_length):
            hidden_layers = []

            for layer_i in range(len(enc_layers)):
                vec = enc_layers[layer_i][batch_i][token_i]
                hidden_layers.append(vec)

            token_embeddings.append(hidden_layers)
        batch_tokens.append(token_embeddings)

    # first_layer = torch.mean(enc_layers[0], 1)
    # second_to_last = torch.mean(enc_layers[11], 1)

    # batch_token_last_four_sum = []
    # for i, batch in enumerate(batch_tokens):
    #     for j, token in enumerate(batch_tokens[i]):
    #         token_last_four_sum = torch.sum(torch.stack(token)[-4:], 0)
    #     batch_token_last_four_sum.append(token_last_four_sum)
    # last_four_sum = torch.stack(batch_token_last_four_sum)
    #print("last_four_sum ",last_four_sum.shape)
    batch_token_last_four_cat = []
    for i, batch in enumerate(batch_tokens):
        for j, token in enumerate(batch_tokens[i]):
            token_last_four_cat = torch.cat((token[-1], token[-2], token[-3], token[-4]), 0)
        batch_token_last_four_cat.append(token_last_four_cat)
    last_four_cat = torch.stack(batch_token_last_four_cat)
    #print("last_four_cat ",last_four_cat.shape)
    # batch_token_sum_all = []
    # for i, batch in enumerate(batch_tokens):
    #     for j, token in enumerate(batch_tokens[i]):
    #         token_sum_all = torch.sum(torch.stack(token)[0:], 0)
    #     batch_token_sum_all.append(token_sum_all)
    # sum_all = torch.stack(batch_token_sum_all)
    #print("sum_all ",sum_all.shape)

 

enc_layers是13层,第一层为word-embedding结果,每层结果都是[batchsize,seqlength,Hidden_size],其它层的大小是[batchsize,seqlength,embedding_size]

GitHub 加速计划 / be / bert
37.61 K
9.55 K
下载
TensorFlow code and pre-trained models for BERT
最近提交(Master分支:2 个月前 )
eedf5716 Add links to 24 smaller BERT models. 4 年前
8028c045 - 4 年前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐