opencv用dnn.readNet加载caffe/torch/darknet/tensorflow的模型和权重
tensorflow
一个面向所有人的开源机器学习框架
项目地址:https://gitcode.com/gh_mirrors/te/tensorflow
免费下载资源
·
cv.dnn.readNet()
官方文档:
https://docs.opencv.org/3.4/d6/d0f/group__dnn.html#ga3b34fe7a29494a6a4295c169a7d32422
Python使用方法举例(Examples for Python):
如使用Darknet的预训练模型:
weights = "yolov2.weights"
config_file = "yolov2.cfg"
# read pre-trained model and config file
net = cv2.dnn.readNet(weights, config_file)
如使用Caffe的预训练模型:
path_to_prototxt = "deploy.prototxt"
path_to_caffemodel = "hed_pretrained_bsds.caffemodel"
net = cv.dnn.readNet(path_to_prototxt, path_to_caffemodel)
C++使用方法举例(Examples for C++):
samples/dnn/classification.cpp;
samples/dnn/object_detection.cpp;
samples/dnn/openpose.cpp;
samples/dnn/segmentation.cpp;
samples/dnn/text_detection.cpp.
可使用的模型(Available Model):
Caffe
, TensorFlow
, Torch
, Darknet
, DLDT
, ONNX
模型权重文件支持的文件格式:
- *.caffemodel (Caffe, http://caffe.berkeleyvision.org/)
- *.pb (TensorFlow, https://www.tensorflow.org/)
- *.t7 | *.net (Torch, http://torch.ch/)
- *.weights (Darknet, https://pjreddie.com/darknet/)
- *.bin (DLDT, https://software.intel.com/openvino-toolkit)
- *.onnx (ONNX, https://onnx.ai/)
模型配置文件支持的文件格式:
*.prototxt (Caffe, http://caffe.berkeleyvision.org/)
*.pbtxt (TensorFlow, https://www.tensorflow.org/)
*.cfg (Darknet, https://pjreddie.com/darknet/)
*.xml (DLDT, https://software.intel.com/openvino-toolkit)
可见不支持pytorch的*.pth和keras等的*.h5
cv.dnn 的其它加载模型的方法有:
- readNetFromCaffe()
- readNetFromDarknet()
- readNetFromModelOptimizer()
- readNetFromONNX()
- readNetFromTensorflow()
- readNetFromTorch()
支持的文件格式同readNet()中相应的模型
GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:2 个月前 )
a49e66f2
PiperOrigin-RevId: 663726708
3 个月前
91dac11a
This test overrides disabled_backends, dropping the default
value in the process.
PiperOrigin-RevId: 663711155
3 个月前
更多推荐
已为社区贡献9条内容
所有评论(0)