tensorflow之tf.nn.l2_normalize与l2_loss的计算
1.tf.nn.l2_normalize
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)
上式:
x为输入的向量;
dim为l2范化的维数,dim取值为0或0或1;
epsilon的范化的最小值边界;
按照列计算:
import tensorflow as tf
input_data = tf.constant([[1.0,2,3],[4.0,5,6],[7.0,8,9]])
output = tf.nn.l2_normalize(input_data, dim = 0)
with tf.Session() as sess:
print sess.run(input_data)
print sess.run(output)
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]
[[0.12309149 0.20739034 0.26726127]
[0.49236596 0.51847583 0.53452253]
[0.86164045 0.82956135 0.80178374]]
[[1./norm(1), 2./norm(2) , 3./norm(3) ]
[4./norm(1) , 5./norm(2) , 6./norm(3) ] =
[7./norm(1) , 8./norm(2) , 9./norm(3) ]]
[[0.12309149 0.20739034 0.26726127]
[0.49236596 0.51847583 0.53452253]
[0.86164045 0.82956135 0.80178374]]
按照行计算:
import tensorflow as tf
input_data = tf.constant([[1.0,2,3],[4.0,5,6],[7.0,8,9]])
output = tf.nn.l2_normalize(input_data, dim = 1)
with tf.Session() as sess:
print sess.run(input_data)
print sess.run(output)
[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]
[[0.26726124 0.5345225 0.8017837 ]
[0.45584232 0.5698029 0.6837635 ]
[0.5025707 0.5743665 0.64616233]]
[[1./norm(1), 2./norm(1) , 3./norm(1) ]
[4./norm(2) , 5./norm(2) , 6./norm(2) ] =
[7./norm(3) , 8..norm(3) , 9./norm(3) ]]
[[0.12309149 0.20739034 0.26726127]
[0.49236596 0.51847583 0.53452253]
[0.86164045 0.82956135 0.80178374]]
2.tf.nn.l2_loss
tf.nn.l2_loss(t, name=None)
解释:这个函数的作用是利用 L2 范数来计算张量的误差值,但是没有开方并且只取 L2 范数的值的一半,具体如下:
output = sum(t ** 2) / 2
import tensorflow as tf
a=tf.constant([1,2,3],dtype=tf.float32)
b=tf.constant([[1,1],[2,2],[3,3]],dtype=tf.float32)
with tf.Session() as sess:
print('a:')
print(sess.run(tf.nn.l2_loss(a)))
print('b:')
print(sess.run(tf.nn.l2_loss(b)))
sess.close()
输出结果: a: 7.0 b: 14.0
输入参数:
- t: 一个Tensor。数据类型必须是一下之一:float32,float64,int64,int32,uint8,int16,int8,complex64,qint8,quint8,qint32。虽然一般情况下,数据维度是二维的。但是,数据维度可以取任意维度。
- name: 为这个操作取个名字。
输出参数:
一个 Tensor ,数据类型和 t 相同,是一个标量。
更多推荐
所有评论(0)