《How to build a Recurrent Neural Network in TensorFlow》by Erik Hallström

#coding: utf-8
#Env:
#tensorflow.__version__: 1.1.0
#Linux
#python2.7


from __future__ import division
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt


num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length


def generateData():
    x = np.array(np.random.choice(2, total_series_length, p=[.5, .5]))
    y = np.roll(x, echo_step)
    y[0:echo_step] = 0
    x = x.reshape(batch_size, -1)
    y = y.reshape(batch_size, -1)
    return x, y

batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
init_state = tf.placeholder(tf.float32, [batch_size, state_size])

W = tf.Variable(np.random.rand(state_size+1, state_size), dtype=tf.float32)
b = tf.Variable(np.zeros((1, state_size)), dtype=tf.float32)
W2 = tf.Variable(np.random.rand(state_size, num_classes), dtype=tf.float32)
b2 = tf.Variable(np.zeros((1, num_classes)), dtype=tf.float32)

inputs_series = tf.unstack(batchX_placeholder, axis=1)
labels_series = tf.unstack(batchY_placeholder, axis=1)


current_state = init_state
states_series = []
for current_input in inputs_series:
    current_input = tf.reshape(current_input, [batch_size, 1])
    input_and_state_concatenated = tf.concat([current_input, current_state], 1)
    next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b)
    states_series.append(next_state)
    current_state = next_state

logits_series = [tf.matmul(state, W2) + b2 for state in states_series]
predictions_series = [tf.nn.softmax(logits) for logits in logits_series]
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels) 
          for logits, labels in zip(logits_series, labels_series)]
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(.3).minimize(total_loss)


def plot(loss_list, predictions_series, batchX, batchY):
    plt.subplot(2,3,1)
    plt.cla()
    plt.plot(loss_list)

    for batch_series_idx in range(5):
        one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
        single_output_series = np.array([(1 if out[0] < .5 else 0)for out in one_hot_output_series])
        plt.subplot(2, 3, batch_series_idx+2)
        plt.cla()
        plt.axis([0, truncated_backprop_length, 0, 2])
        left_offset = range(truncated_backprop_length)
        plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color='blue')
        plt.bar(left_offset, batchY[batch_series_idx, :]*.5, width=1, color='red')
        plt.bar(left_offset, single_output_series * .3, width=1, color='green')
        plt.draw()
        plt.pause(0.0001)


with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    plt.ion()
    plt.figure()
    plt.show()
    loss_list = []
    for epoch_idx in range(num_epochs):
        x, y = generateData()
        _current_state = np.zeros((batch_size, state_size))
        print 'New data, epoch', epoch_idx
        for batch_idx in range(num_batches):
            start_idx = batch_idx * truncated_backprop_length
            end_idx = start_idx + truncated_backprop_length
            batchX = x[: ,start_idx:end_idx]
            batchY = y[: ,start_idx:end_idx]
            _total_loss, _train_step, _current_state, _predictions_series = sess.run(
            [total_loss, train_step, current_state, predictions_series],
            feed_dict = {batchX_placeholder: batchX,
                         batchY_placeholder: batchY,
                         init_state: _current_state})
            loss_list.append(_total_loss)

            if batch_idx % 100 == 0:
                print 'Step', batch_idx, 'Loss', _total_loss
                plot(loss_list, _predictions_series, batchX, batchY)
plt.ioff()
plt.show()   

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:2 个月前 )
a49e66f2 PiperOrigin-RevId: 663726708 2 个月前
91dac11a This test overrides disabled_backends, dropping the default value in the process. PiperOrigin-RevId: 663711155 2 个月前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐