TensorFlow循环神经网络系列实践教程
tensorflow
一个面向所有人的开源机器学习框架
项目地址:https://gitcode.com/gh_mirrors/te/tensorflow
免费下载资源
·
《How to build a Recurrent Neural Network in TensorFlow》by Erik Hallström
#coding: utf-8
#Env:
#tensorflow.__version__: 1.1.0
#Linux
#python2.7
from __future__ import division
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length
def generateData():
x = np.array(np.random.choice(2, total_series_length, p=[.5, .5]))
y = np.roll(x, echo_step)
y[0:echo_step] = 0
x = x.reshape(batch_size, -1)
y = y.reshape(batch_size, -1)
return x, y
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
init_state = tf.placeholder(tf.float32, [batch_size, state_size])
W = tf.Variable(np.random.rand(state_size+1, state_size), dtype=tf.float32)
b = tf.Variable(np.zeros((1, state_size)), dtype=tf.float32)
W2 = tf.Variable(np.random.rand(state_size, num_classes), dtype=tf.float32)
b2 = tf.Variable(np.zeros((1, num_classes)), dtype=tf.float32)
inputs_series = tf.unstack(batchX_placeholder, axis=1)
labels_series = tf.unstack(batchY_placeholder, axis=1)
current_state = init_state
states_series = []
for current_input in inputs_series:
current_input = tf.reshape(current_input, [batch_size, 1])
input_and_state_concatenated = tf.concat([current_input, current_state], 1)
next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b)
states_series.append(next_state)
current_state = next_state
logits_series = [tf.matmul(state, W2) + b2 for state in states_series]
predictions_series = [tf.nn.softmax(logits) for logits in logits_series]
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
for logits, labels in zip(logits_series, labels_series)]
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(.3).minimize(total_loss)
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2,3,1)
plt.cla()
plt.plot(loss_list)
for batch_series_idx in range(5):
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
single_output_series = np.array([(1 if out[0] < .5 else 0)for out in one_hot_output_series])
plt.subplot(2, 3, batch_series_idx+2)
plt.cla()
plt.axis([0, truncated_backprop_length, 0, 2])
left_offset = range(truncated_backprop_length)
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color='blue')
plt.bar(left_offset, batchY[batch_series_idx, :]*.5, width=1, color='red')
plt.bar(left_offset, single_output_series * .3, width=1, color='green')
plt.draw()
plt.pause(0.0001)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
plt.ion()
plt.figure()
plt.show()
loss_list = []
for epoch_idx in range(num_epochs):
x, y = generateData()
_current_state = np.zeros((batch_size, state_size))
print 'New data, epoch', epoch_idx
for batch_idx in range(num_batches):
start_idx = batch_idx * truncated_backprop_length
end_idx = start_idx + truncated_backprop_length
batchX = x[: ,start_idx:end_idx]
batchY = y[: ,start_idx:end_idx]
_total_loss, _train_step, _current_state, _predictions_series = sess.run(
[total_loss, train_step, current_state, predictions_series],
feed_dict = {batchX_placeholder: batchX,
batchY_placeholder: batchY,
init_state: _current_state})
loss_list.append(_total_loss)
if batch_idx % 100 == 0:
print 'Step', batch_idx, 'Loss', _total_loss
plot(loss_list, _predictions_series, batchX, batchY)
plt.ioff()
plt.show()
GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:2 个月前 )
a49e66f2
PiperOrigin-RevId: 663726708
2 个月前
91dac11a
This test overrides disabled_backends, dropping the default
value in the process.
PiperOrigin-RevId: 663711155
2 个月前
更多推荐
已为社区贡献8条内容
所有评论(0)