【2022年】解决tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed
tensorflow
一个面向所有人的开源机器学习框架
项目地址:https://gitcode.com/gh_mirrors/te/tensorflow
免费下载资源
·
报错截图:
原代码:
import cv2
from mtcnn import MTCNN
detector = MTCNN()
img = cv2.imread('./Lena3.jpg')
output = detector.detect_faces(img)
print(output)
在网上搜了半天,大部分是说GPU被占用,或者是向量维数不正确什么的。但是我的问题并不在这里。
解决方式:
加入Tensorflow显存设置。
import cv2
import tensorflow.compat.v1 as tf
from mtcnn import MTCNN
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.6
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
detector = MTCNN()
img = cv2.imread('./Lena3.jpg')
output = detector.detect_faces(img)
print(output)
结果:
加入显存设置后正常运行。
p.s.玩一玩MTCNN人脸检测
import cv2
import tensorflow.compat.v1 as tf
from mtcnn import MTCNN
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.6
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
detector = MTCNN()
img = cv2.imread('./Lena3.jpg')
output = detector.detect_faces(img)
print(output)
x,y,width,height = output[0]['box']
left_eye_X,left_eye_Y = output[0]['keypoints']['left_eye']
right_eye_X,right_eye_Y = output[0]['keypoints']['right_eye']
nose_X,nose_Y = output[0]['keypoints']['nose']
mouth_left_X,mouth_left_Y = output[0]['keypoints']['mouth_left']
mouth_right_X,mouth_right_Y = output[0]['keypoints']['mouth_right']
# opencv的三色顺序为BGR (Blue,Green,Red)
cv2.rectangle(img,pt1=(x,y),pt2=(x+width,y+height),color=(0,255,0),thickness=2)
cv2.circle(img,center=(left_eye_X,left_eye_Y),color=(0,0,255),thickness=2,radius=1)
cv2.circle(img,center=(right_eye_X,right_eye_Y),color=(0,0,255),thickness=2,radius=1)
cv2.circle(img,center=(nose_X,nose_Y),color=(255,0,0),thickness=2,radius=1)
cv2.circle(img,center=(mouth_left_X,mouth_left_Y),color=(255,0,0),thickness=2,radius=1)
cv2.circle(img,center=(mouth_right_X,mouth_right_Y),color=(255,0,0),thickness=2,radius=1)
cv2.imshow('result',img)
# cv2.imwrite('./result.png',img)
cv2.waitKey(0)
GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:3 个月前 )
a49e66f2
PiperOrigin-RevId: 663726708
3 个月前
91dac11a
This test overrides disabled_backends, dropping the default
value in the process.
PiperOrigin-RevId: 663711155
3 个月前
更多推荐
已为社区贡献3条内容
所有评论(0)