TensorFlow框架的简单理解
tensorflow
一个面向所有人的开源机器学习框架
项目地址:https://gitcode.com/gh_mirrors/te/tensorflow
免费下载资源
·
思路流程
Tensorflow入门代码(基本框架)
# 简化调用库名
import tensorflow as tf
import numpy as np
# 模拟生成100对数据对, 对应的函数为y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype("float32")
y_data = x_data * 0.1 + 0.3
# 指定w和b变量的取值范围(注意我们要利用TensorFlow来得到w和b的值)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# 最小化均方误差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# 初始化TensorFlow参数
init = tf.initialize_all_variables()
# 运行数据流图(注意在这一步才开始执行计算过程)
sess = tf.Session()
sess.run(init)
# 观察多次迭代计算时,w和b的拟合值
for step in xrange(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))
# 最好的情况是w和b分别接近甚至等于0.1和0.3
GitHub 加速计划 / te / tensorflow
184.55 K
74.12 K
下载
一个面向所有人的开源机器学习框架
最近提交(Master分支:2 个月前 )
a49e66f2
PiperOrigin-RevId: 663726708
2 个月前
91dac11a
This test overrides disabled_backends, dropping the default
value in the process.
PiperOrigin-RevId: 663711155
2 个月前
更多推荐
已为社区贡献7条内容
所有评论(0)