Logstash处理json格式日志文件的三种方法
假设日志文件中的每一行记录格式为json的,如:
{"Method":"JSAPI.JSTicket","Message":"JSTicket:kgt8ON7yVITDhtdwci0qeZg4L-Dj1O5WF42Nog47n_0aGF4WPJDIF2UA9MeS8GzLe6MPjyp2WlzvsL0nlvkohw","CreateTime":"2015/10/13 9:39:59","AppGUID":"cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d","_PartitionKey":"cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d","_RowKey":"1444700398710_ad4d33ce-a9d9-4d11-932e-e2ccebdb726c","_UnixTS":1444700398710}
默认配置下,logstash处理插入进elasticsearch后,查到的结果是这样的:
{
"_index": "logstash-2015.10.16",
"_type": "voip_feedback",
"_id": "sheE9eXiQASMDVtRJ0EYcg",
"_version": 1,
"found": true,
"_source": {
"message": "{\"Method\":\"JSAPI.JSTicket\",\"Message\":\"JSTicket:kgt8ON7yVITDhtdwci0qeZg4L-Dj1O5WF42Nog47n_0aGF4WPJDIF2UA9MeS8GzLe6MPjyp2WlzvsL0nlvkohw\",\"CreateTime\":\"2015/10/13 9:39:59\",\"AppGUID\":\"cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d\",\"_PartitionKey\":\"cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d\",\"_RowKey\":\"1444700398710_ad4d33ce-a9d9-4d11-932e-e2ccebdb726c\",\"_UnixTS\":1444700398710}",
"@version": "1",
"@timestamp": "2015-10-16T00:39:51.252Z",
"type": "voip_feedback",
"host": "ipphone",
"path": "/usr1/data/voip_feedback.txt"
}
}
即会将json记录做为一个字符串放到”message”下,但是我是想让logstash自动解析json记录,将各字段放入elasticsearch中。有三种配置方式可以实现。
第一种,直接设置format => json
file {
type => "voip_feedback"
path => ["/usr1/data/voip_feedback.txt"]
format => json
sincedb_path => "/home/jfy/soft/logstash-1.4.2/voip_feedback.access"
}
这种方式查询出的结果是:
{
"_index": "logstash-2015.10.16",
"_type": "voip_feedback",
"_id": "NrNX8HrxSzCvLl4ilKeyCQ",
"_version": 1,
"found": true,
"_source": {
"Method": "JSAPI.JSTicket",
"Message": "JSTicket:kgt8ON7yVITDhtdwci0qeZg4L-Dj1O5WF42Nog47n_0aGF4WPJDIF2UA9MeS8GzLe6MPjyp2WlzvsL0nlvkohw",
"CreateTime": "2015/10/13 9:39:59",
"AppGUID": "cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d",
"_PartitionKey": "cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d",
"_RowKey": "1444700398710_ad4d33ce-a9d9-4d11-932e-e2ccebdb726c",
"_UnixTS": 1444700398710,
"@version": "1",
"@timestamp": "2015-10-16T00:16:11.455Z",
"type": "voip_feedback",
"host": "ipphone",
"path": "/usr1/data/voip_feedback.txt"
}
}
可以看到,json记录已经被直接解析成各字段放入到了_source中,但是原始记录内容没有被保存
第二种,使用codec => json
file {
type => "voip_feedback"
path => ["/usr1/data/voip_feedback.txt"]
sincedb_path => "/home/jfy/soft/logstash-1.4.2/voip_feedback.access"
codec => json {
charset => "UTF-8"
}
}
这种方式查询出的结果与第一种一样,字段被解析,原始记录内容也没有保存
第三种,使用filter json
filter {
if [type] == "voip_feedback" {
json {
source => "message"
#target => "doc"
#remove_field => ["message"]
}
}
}
这种方式查询出的结果是这样的:
{
"_index": "logstash-2015.10.16",
"_type": "voip_feedback",
"_id": "CUtesLCETAqhX73NKXZfug",
"_version": 1,
"found": true,
"_source": {
"message": "{\"Method222\":\"JSAPI.JSTicket\",\"Message\":\"JSTicket:kgt8ON7yVITDhtdwci0qeZg4L-Dj1O5WF42Nog47n_0aGF4WPJDIF2UA9MeS8GzLe6MPjyp2WlzvsL0nlvkohw\",\"CreateTime\":\"2015/10/13 9:39:59\",\"AppGUID\":\"cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d\",\"_PartitionKey\":\"cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d\",\"_RowKey\":\"1444700398710_ad4d33ce-a9d9-4d11-932e-e2ccebdb726c\",\"_UnixTS\":1444700398710}",
"@version": "1",
"@timestamp": "2015-10-16T00:28:20.018Z",
"type": "voip_feedback",
"host": "ipphone",
"path": "/usr1/data/voip_feedback.txt",
"Method222": "JSAPI.JSTicket",
"Message": "JSTicket:kgt8ON7yVITDhtdwci0qeZg4L-Dj1O5WF42Nog47n_0aGF4WPJDIF2UA9MeS8GzLe6MPjyp2WlzvsL0nlvkohw",
"CreateTime": "2015/10/13 9:39:59",
"AppGUID": "cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d",
"_PartitionKey": "cb54ba2d-1d38-45f2-9ed1-abff0bf7dd3d",
"_RowKey": "1444700398710_ad4d33ce-a9d9-4d11-932e-e2ccebdb726c",
"_UnixTS": 1444700398710,
"tags": [
"111",
"222"
]
}
}
可以看到,原始记录被保存,同时字段也被解析保存。如果确认不需要保存原始记录内容,可以加设置:remove_field => [“message”]
比较以上三种方法,最方便直接的就是在file中设置format => json
另外需要注意的是,logstash会在向es插入数据时默认会在_source下增加type,host,path三个字段,如果json内容中本身也含有type,host,path字段,那么解析后将覆盖掉logstash默认的这三个字段,尤其是type字段,这个同时也是做为index/type用的,覆盖掉后,插入进es中的index/type就是json数据记录中的内容,将不再是logstash config中配置的type值。
这时需要设置filter.json.target,设置该字段后json原始内容将不会放在_source下,而是放到设置的”doc”下:
{
"_index": "logstash-2015.10.20",
"_type": "3alogic_log",
"_id": "xfj3ngd5S3iH2YABjyU6EA",
"_version": 1,
"found": true,
"_source": {
"@version": "1",
"@timestamp": "2015-10-20T11:36:24.503Z",
"type": "3alogic_log",
"host": "server114",
"path": "/usr1/app/log/mysql_3alogic_log.log",
"doc": {
"id": 633796,
"identity": "13413602120",
"type": "EAP_TYPE_PEAP",
"apmac": "88-25-93-4E-1F-96",
"usermac": "00-65-E0-31-62-5D",
"time": "20151020-193624",
"apmaccompany": "TP-LINK TECHNOLOGIES CO.,LTD",
"usermaccompany": ""
}
}
}
这样就不会覆盖掉_source下的type,host,path值
而且在kibana中显示时字段名称为doc.type,doc.id…
更多推荐
所有评论(0)