VS2015+Qt+OpenCV+open62541开发过程(03_VS2015读取海康威视工业相机-方法1 利用海康威视提供的SDK)
opencv
OpenCV: 开源计算机视觉库
项目地址:https://gitcode.com/gh_mirrors/opencv31/opencv
免费下载资源
·
工业相机:MV-CS050-10GC
安装海康威视工业相机调试软件MVS
安装MVS后,会自动添加环境变量路径,方便使用其提供的SDK二次开发
打开软件,软件左侧会扫描到电脑实际连接的相机,更改IP地址与电脑在同一个网段
电脑网卡开启巨帧,本实验使用海康威视工业相机GigE通讯,带宽要求高,需要网卡开启巨帧。
几个重要的相机参数:
- 图像格式,默认BGR8,如果用opencv处理需要格式转化
- GEV Heartbeat Time,如果程序调用相机连接中断,设定时间后相机自动释放连接
- 曝光时间、自动校正等参数根据现场实际调整
- 工具中带宽管理,多个相机同时使用时需要对每个相机进行带宽分配,否则会网络堵塞
- 改完参数要保存到用户参数集,否则断电上电会丢失参数,上电加载哪个参数集可以设置
MVS软件提供了二次开发相关文档、示例代码,点帮助-Development打开文件夹
提供了多种编程语言和编程环境的Sample
参考Sample_VS2015编写一个采集海康威视摄像头并用opencv显示的程序:
解决方案管理器中,右键-配置工程属性C/C++ 常规-附加包含目录
解决方案管理器中,右键-配置工程属性链接器 常规-附加库目录
解决方案管理器中,右键-配置工程属性链接器 输入-附加依赖项
在main.cpp中输入附件中代码,main函数中按顺序程序功能:
// test01.cpp : 定义控制台应用程序的入口点。
#include "stdafx.h"
#include <iostream>
#include<windows.h> //使用Sleep(1000)延时函数头文件
#include <stdio.h>
#include <process.h>
#include <conio.h>
#include "string.h"
#include <opencv2/opencv.hpp> //opencv头文件
#include<opencv2/core.hpp>
#include<opencv2/imgproc.hpp>
#include<opencv2/highgui.hpp>
#include<opencv2/videoio.hpp>
#include "MvCameraControl.h"
using namespace std; //使用命名空间
using namespace cv;
/*声明全局变量*/
unsigned int g_nPayloadSize = 0; //海康相机用的变量
// print the discovered devices information to user
bool PrintDeviceInfo(MV_CC_DEVICE_INFO* pstMVDevInfo)
{
if (NULL == pstMVDevInfo)
{
printf("The Pointer of pstMVDevInfo is NULL!\n");
return false;
}
if (pstMVDevInfo->nTLayerType == MV_GIGE_DEVICE)
{
int nIp1 = ((pstMVDevInfo->SpecialInfo.stGigEInfo.nCurrentIp & 0xff000000) >> 24);
int nIp2 = ((pstMVDevInfo->SpecialInfo.stGigEInfo.nCurrentIp & 0x00ff0000) >> 16);
int nIp3 = ((pstMVDevInfo->SpecialInfo.stGigEInfo.nCurrentIp & 0x0000ff00) >> 8);
int nIp4 = (pstMVDevInfo->SpecialInfo.stGigEInfo.nCurrentIp & 0x000000ff);
// print current ip and user defined name
printf("CurrentIp: %d.%d.%d.%d\n", nIp1, nIp2, nIp3, nIp4);
printf("UserDefinedName: %s\n\n", pstMVDevInfo->SpecialInfo.stGigEInfo.chUserDefinedName);
}
else if (pstMVDevInfo->nTLayerType == MV_USB_DEVICE)
{
printf("UserDefinedName: %s\n", pstMVDevInfo->SpecialInfo.stUsb3VInfo.chUserDefinedName);
printf("Serial Number: %s\n", pstMVDevInfo->SpecialInfo.stUsb3VInfo.chSerialNumber);
printf("Device Number: %d\n\n", pstMVDevInfo->SpecialInfo.stUsb3VInfo.nDeviceNumber);
}
else
{
printf("Not support.\n");
}
return true;
}
int RGB2BGR(unsigned char* pRgbData, unsigned int nWidth, unsigned int nHeight)
{
if (NULL == pRgbData)
{
return MV_E_PARAMETER;
}
for (unsigned int j = 0; j < nHeight; j++)
{
for (unsigned int i = 0; i < nWidth; i++)
{
unsigned char red = pRgbData[j * (nWidth * 3) + i * 3];
pRgbData[j * (nWidth * 3) + i * 3] = pRgbData[j * (nWidth * 3) + i * 3 + 2];
pRgbData[j * (nWidth * 3) + i * 3 + 2] = red;
}
}
return MV_OK;
}
// convert data stream in Mat format
bool Convert2Mat(MV_FRAME_OUT_INFO_EX* pstImageInfo, unsigned char * pData)
{
cv::Mat srcImage;
if (pstImageInfo->enPixelType == PixelType_Gvsp_Mono8)
{
srcImage = cv::Mat(pstImageInfo->nHeight, pstImageInfo->nWidth, CV_8UC1, pData);
}
else if (pstImageInfo->enPixelType == PixelType_Gvsp_RGB8_Packed)
{
RGB2BGR(pData, pstImageInfo->nWidth, pstImageInfo->nHeight);
srcImage = cv::Mat(pstImageInfo->nHeight, pstImageInfo->nWidth, CV_8UC3, pData);
}
else
{
printf("unsupported pixel format\n");
return false;
}
if (NULL == srcImage.data)
{
return false;
}
//save converted image in a local file
try {
#if defined (VC9_COMPILE)
cvSaveImage("MatImage.bmp", &(IplImage(srcImage)));
#else
cv::imwrite("MatImage.jpg", srcImage); //存储到工程所在的文件夹内
#endif
}
catch (cv::Exception& ex) {
fprintf(stderr, "Exception saving image to bmp format: %s\n", ex.what());
}
srcImage.release();
return true;
}
/*主函数*/
int main()
{
int nRet = MV_OK;
void* handle = NULL;
do
{
// Enum device
MV_CC_DEVICE_INFO_LIST stDeviceList;
memset(&stDeviceList, 0, sizeof(MV_CC_DEVICE_INFO_LIST));
nRet = MV_CC_EnumDevices(MV_GIGE_DEVICE | MV_USB_DEVICE, &stDeviceList);
if (MV_OK != nRet)
{
printf("Enum Devices fail! nRet [0x%x]\n", nRet);
break;
}
if (stDeviceList.nDeviceNum > 0)
{
for (unsigned int i = 0; i < stDeviceList.nDeviceNum; i++)
{
printf("[device %d]:\n", i);
MV_CC_DEVICE_INFO* pDeviceInfo = stDeviceList.pDeviceInfo[i];
if (NULL == pDeviceInfo)
{
break;
}
PrintDeviceInfo(pDeviceInfo);
}
}
else
{
printf("Find No Devices!\n");
break;
}
// input the format to convert
unsigned int nFormat = 0; //[0] OpenCV_Mat\n,[1] OpenCV_IplImage\n,此处等于0,将海康图像转换为OpenCV4.5中的Mat格式,IplImage格式为OpenCV2用的
// select device to connect
unsigned int nIndex = 0; //nIndex=0为枚举到的第一个摄像头,多个摄像头一次加1
if (nIndex >= stDeviceList.nDeviceNum)
{
printf("Input CameraIndex error!\n");
break;
}
// Select device and create handle
nRet = MV_CC_CreateHandle(&handle, stDeviceList.pDeviceInfo[nIndex]);
if (MV_OK != nRet)
{
printf("Create Handle fail! nRet [0x%x]\n", nRet);
break;
}
// open device
nRet = MV_CC_OpenDevice(handle);
if (MV_OK != nRet)
{
printf("Open Device fail! nRet [0x%x]\n", nRet);
break;
}
// Detection network optimal package size(It only works for the GigE camera)
if (stDeviceList.pDeviceInfo[nIndex]->nTLayerType == MV_GIGE_DEVICE)
{
int nPacketSize = MV_CC_GetOptimalPacketSize(handle);
if (nPacketSize > 0)
{
nRet = MV_CC_SetIntValue(handle, "GevSCPSPacketSize", nPacketSize);
if (nRet != MV_OK)
{
printf("Warning: Set Packet Size fail nRet [0x%x]!", nRet);
}
}
else
{
printf("Warning: Get Packet Size fail nRet [0x%x]!", nPacketSize);
}
}
// Set trigger mode as off
nRet = MV_CC_SetEnumValue(handle, "TriggerMode", 0);
if (MV_OK != nRet)
{
printf("Set Trigger Mode fail! nRet [0x%x]\n", nRet);
break;
}
// Get payload size
MVCC_INTVALUE stParam;
memset(&stParam, 0, sizeof(MVCC_INTVALUE));
nRet = MV_CC_GetIntValue(handle, "PayloadSize", &stParam);
if (MV_OK != nRet)
{
printf("Get PayloadSize fail! nRet [0x%x]\n", nRet);
break;
}
g_nPayloadSize = stParam.nCurValue;
// Start grab image
nRet = MV_CC_StartGrabbing(handle);
if (MV_OK != nRet)
{
printf("Start Grabbing fail! nRet [0x%x]\n", nRet);
break;
}
MV_FRAME_OUT_INFO_EX stImageInfo = { 0 };
memset(&stImageInfo, 0, sizeof(MV_FRAME_OUT_INFO_EX));
unsigned char * pData = (unsigned char *)malloc(sizeof(unsigned char) * (g_nPayloadSize));
if (pData == NULL)
{
printf("Allocate memory failed.\n");
break;
}
// get one frame from camera with timeout=1000ms
nRet = MV_CC_GetOneFrameTimeout(handle, pData, g_nPayloadSize, &stImageInfo, 1000);
if (nRet == MV_OK)
{
printf("Get One Frame: Width[%d], Height[%d], nFrameNum[%d]\n",
stImageInfo.nWidth, stImageInfo.nHeight, stImageInfo.nFrameNum);
}
else
{
printf("No data[0x%x]\n", nRet);
free(pData);
pData = NULL;
break;
}
// 数据去转换
bool bConvertRet = false;
if (0 == nFormat)
{
bConvertRet = Convert2Mat(&stImageInfo, pData);
}
else
{
//bConvertRet = Convert2Ipl(&stImageInfo, pData);
}
// print result
if (bConvertRet)
{
printf("OpenCV format convert finished.\n");
free(pData);
pData = NULL;
}
else
{
printf("OpenCV format convert failed.\n");
free(pData);
pData = NULL;
break;
}
// Stop grab image
nRet = MV_CC_StopGrabbing(handle);
if (MV_OK != nRet)
{
printf("Stop Grabbing fail! nRet [0x%x]\n", nRet);
break;
}
// Close device
nRet = MV_CC_CloseDevice(handle);
if (MV_OK != nRet)
{
printf("ClosDevice fail! nRet [0x%x]\n", nRet);
break;
}
// Destroy handle
nRet = MV_CC_DestroyHandle(handle);
if (MV_OK != nRet)
{
printf("Destroy Handle fail! nRet [0x%x]\n", nRet);
break;
}
cv::Mat img = cv::imread("MatImage.jpg"); //从工程所在的文件夹内读取图片
cv::Mat hsv;
cv::Mat gray;
cv::Mat hsvsplit[3];
cv::namedWindow("test", WINDOW_FREERATIO);
cv::namedWindow("test1", WINDOW_FREERATIO);
cv::namedWindow("test2", WINDOW_FREERATIO);
cv::namedWindow("test3", WINDOW_FREERATIO);
cv::namedWindow("test4", WINDOW_FREERATIO);
cv::imshow("test", img); //在窗口显示一张图片
cv::cvtColor(img, hsv, COLOR_BGR2HSV);
cv::cvtColor(img, gray, COLOR_BGR2GRAY);
cv::split(hsv, hsvsplit);
cv::imshow("test1", hsv);
cv::imshow("test2", hsvsplit[0]);
cv::imshow("test3", hsvsplit[1]);
cv::imshow("test4", hsvsplit[2]);
} while (0);
if (nRet != MV_OK)
{
if (handle != NULL)
{
MV_CC_DestroyHandle(handle);
handle = NULL;
}
}
cv::waitKey(0); //等待键盘按下,再执行后面的程序
destroyAllWindows();
return 0;
}
- 枚举(找到)相机,并对相机建立索引号,实验中只有一个相机,索引号为0
- 根据索引号选择相机并创建句柄
- 打开相机
- 获取最佳的网络包大小
- 将相机触发模式置OFF
- 获取payload大小
- 开始抓取图像并抓取一帧
- 图像数据转换,将RGB模式转换为BGR模式,并用opencv函数imwrite将图片存储到工程所在的文件夹
- 停止抓图
- 关闭相机
- 用opencv函数将BGR格式转换为HSV格式,并进行通道分离,建立窗口显示图像
- 销毁句柄
按Ctrl+F5调试,如下图,说明通过相机采图并处理成功。
GitHub 加速计划 / opencv31 / opencv
77.38 K
55.71 K
下载
OpenCV: 开源计算机视觉库
最近提交(Master分支:2 个月前 )
48668119
dnn: use dispatching for Winograd optimizations 6 天前
3dace76c
flann: remove unused hdf5 header 6 天前
更多推荐
已为社区贡献1条内容
所有评论(0)