BERT(Bidirectional Encoder Representations from Transformers)是一种用于自然语言处理任务的神经网络模型,它可以用于分类任务。

对于分类任务,BERT可以在输入文本之后添加一个分类层,然后训练模型来预测输入文本属于哪一类。

举个例子,假设我们要对一些新闻文本进行分类,分为“体育”、“娱乐”、“政治”三类。我们可以使用BERT将新闻文本编码为一个向量,然后再在其之后添加一个分类层,训练模型来预测输入文本属于哪一类。

因此,在使用BERT进行分类任务时,需要提供训练样本,其中包含文本和对应的分类标签,然后训练模型来预测新的输入文本属于

GitHub 加速计划 / be / bert
37.61 K
9.55 K
下载
TensorFlow code and pre-trained models for BERT
最近提交(Master分支:2 个月前 )
eedf5716 Add links to 24 smaller BERT models. 4 年前
8028c045 - 4 年前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐