数据类型(版本4.6.0)

CV_8U:占8位的unsigned

CV_8UC(n):占8位的unsigned char

CV_8UC1:占8位的unsigned char 一通道

CV_8UC2:占8位的unsigned char 二通道

CV_8UC3:占8位的unsigned char 三通道

CV_8UC4:占8位的unsigned char 四通道

 

CV_8S:占8位的signed

CV_8SC(n):占8位的signed char

CV_8SC1:占8位的signed char 一通道

CV_8SC2:占8位的signed char 二通道

CV_8SC3:占8位的signed char 三通道

CV_8SC4:占8位的signed char 四通道

 

CV_16U:占16位的unsigned

CV_16UC(n):占16位的unsigned char

CV_16UC1:占16位的unsigned char 一通道

CV_16U2:占16位的unsigned char 二通道

CV_16U3:占16位的unsigned char 三通道

CV_16U4:占16位的unsigned char 四通道

 

CV_16S:占16位的signed

CV_16SC(n):占16位的signed char

CV_16SC1:占16位的signed char 一通道

CV_16SC2:占16位的signed char 二通道

CV_16SC3:占16位的signed char 三通道

CV_16SC4:占16位的signed char 四通道

 

CV_16F:占16位的float

CV_16FC(n):占16位的float char

CV_16FC1:占16位的float char 一通道

CV_16FC2:占16位的float char 二通道

CV_16FC3:占16位的float char 三通道

CV_16FC4:占16位的float char 四通道

 

CV_32S:占32位的signed

CV_32SC(n):占32位的signed char

CV_32SC1:占32位的signed char 一通道

CV_32SC2:占32位的signed char 二通道

CV_32SC3:占32位的signed char 三通道

CV_32SC4:占32位的signed char 四通道

 

CV_32F:占32位的float

CV_32FC(n):占32位的float char

CV_32FC1:占32位的float char 一通道

CV_32FC2:占32位的float char 二通道

CV_32FC3:占32位的float char 三通道

CV_32FC4:占23位的float char 四通道

 

CV_64F:占64位的float

CV_64FC(n):占64位的float char

CV_64FC1:占64位的float char 一通道

CV_64FC2:占64位的float char 二通道

CV_64FC3:占64位的float char 三通道

CV_64FC4:占64位的float char 四通道

c63ba8eebe083ee1ba956f8e702ce90e.png

矩阵基本操作

全零矩阵


CV_NODISCARD_STD static MatExpr Mat::zeros(int rows, int cols, int type);
CV_NODISCARD_STD static MatExpr Mat::zeros(Size size, int type);

CV_NODISCARD_STD static MatExpr Mat::zeros(int ndims, const int* sz, int type);
//not recommended

rows:行数

cols:列数

type:数据类型(CV_16F)

size:Size(宽(列数),高(行数))

  • Size与Mat中的成员函数.size()的返回值,有相同的数据类型,是[宽*高]。

  • Mat中的成员变量.size,与以上二者不同,是 rows*cols

全一矩阵


CV_NODISCARD_STD static MatExpr Mat::ones(int rows, int cols, int type);
CV_NODISCARD_STD static MatExpr Mat::ones(Size size, int type);

CV_NODISCARD_STD static MatExpr Mat::ones(int ndims, const int* sz, int type);
//not recommended

rows:行数

cols:列数

type:数据类型(CV_16F)

size:Size(宽(列数),高(行数))

单位矩阵


CV_NODISCARD_STD static MatExpr Mat::eye(int rows, int cols, int type);
CV_NODISCARD_STD static MatExpr Mat::eye(Size size, int type);

rows:行数

cols:列数

type:数据类型(CV_16F)

size:Size(宽(列数),高(行数))

矩阵转置


MatExpr Mat::t() const;

求逆矩阵


MatExpr Mat::inv(int method=DECOMP_LU) const;

逗号式分隔创建矩阵,常用于自定义卷积核


template<typename _Tp> inline
Mat_<_Tp>::Mat_(int _rows, int _cols)
    : Mat(_rows, _cols, traits::Type<_Tp>::value)
{
}

template<typename _Tp> inline
Mat_<_Tp>::Mat_(int _rows, int _cols, const _Tp& value)
    : Mat(_rows, _cols, traits::Type<_Tp>::value)
{
    *this = value;
}

template<typename _Tp> inline
Mat_<_Tp>::Mat_(Size _sz)
    : Mat(_sz.height, _sz.width, traits::Type<_Tp>::value)
{}

template<typename _Tp> inline
Mat_<_Tp>::Mat_(Size _sz, const _Tp& value)
    : Mat(_sz.height, _sz.width, traits::Type<_Tp>::value)
{
    *this = value;
}

以下为使用实例


Mat a=Mat_<int>(2,2)<<(1,2,3,4);
Mat b=Mat_<double>(Size(2,2))<<(1,2,3,4);

注意:给出的数据类型必须是基本数据类型,如int,double。不能是CV_16F等。

矩阵定义(只列出常用的)


Mat::Mat() CV_NOEXCEPT;
Mat::Mat(int rows, int cols, int type);
Mat::Mat(Size size, int type);
Mat::Mat(int rows, int cols, int type, const Scalar& s);
Mat::Mat(Size size, int type, const Scalar& s);
Mat::Mat(const std::vector<int>& sizes, int type);
Mat::Mat(const std::vector<int>& sizes, int type, const Scalar& s);
Mat::Mat(const Mat& m);

void Mat::create(int rows, int cols, int type);
void Mat::create(Size size, int type);
void Mat::create(const std::vector<int>& sizes, int type);

rows:行数

cols:列数

type:数据类型(CV_16F)

size:Size(宽(列数),高(行数))

数据类型Scalar

  • Scalar(gray)

  • Scalar(blue,green,red)

通过ptr与at函数遍历矩阵

Vec类型


typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
 
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
 
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
 
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;
 
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
 
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;

以下为实例


Mat a(Size(2560,1440),CV_8UC3);
for(int i=0;i<a.rows;i++){
      for(int j=0;j<a.cols;j++){
          a.ptr(i,j)[0]=0;
          a.ptr(i,j)[1]=0;
          a.ptr(i,j)[2]=255;
      }
}
for(int i=0;i<a.rows;i++){
      for(int j=0;j<a.cols;j++){
          a.ptr<Vec3b>(i,j)[0]=0;
          a.ptr<Vec3b>(i,j)[1]=0;
          a.ptr<Vec3b>(i,j)[2]=255;
      }
}
for(int i=0;i<a.rows;i++){
      for(int j=0;j<a.cols;j++){
          a.at<Vec3b>(i,j)[0]=0;
          a.at<Vec3b>(i,j)[1]=0;
          a.at<Vec3b>(i,j)[2]=255;
      }
}
  • 用ptr访问可以不加Vec类型

  • 用at访问必须加Vec类型

通过迭代器遍历矩阵(recommended)


Mat a(Size(2560,1440),CV_8UC3);
for(auto iter=a.begin<Vec3b>();iter!=a.end<Vec3b>();iter++){
      iter[0]=255;
      iter[1]=0;
      iter[2]=0;
}

图像基本操作

图片读取


CV_EXPORTS_W Mat imread( const String& filename, int flags = IMREAD_COLOR );
enum ImreadModes {

       IMREAD_UNCHANGED            = -1, 
//!< If set, return the loaded image as is (with alpha channel, otherwise it gets cropped). Ignore EXIF orientation.

       IMREAD_GRAYSCALE            = 0,  
//!< If set, always convert image to the single channel grayscale image (codec internal conversion).

       IMREAD_COLOR                = 1,  
//!< If set, always convert image to the 3 channel BGR color image.

       IMREAD_ANYDEPTH             = 2,  
//!< If set, return 16-bit/32-bit image when the input has the corresponding depth, otherwise convert it to 8-bit.

       IMREAD_ANYCOLOR             = 4,  
//!< If set, the image is read in any possible color format.

       IMREAD_LOAD_GDAL            = 8,  
//!< If set, use the gdal driver for loading the image.

       IMREAD_REDUCED_GRAYSCALE_2  = 16, 
//!< If set, always convert image to the single channel grayscale image and the image size reduced 1/2.

       IMREAD_REDUCED_COLOR_2      = 17, 
//!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/2.

       IMREAD_REDUCED_GRAYSCALE_4  = 32, 
//!< If set, always convert image to the single channel grayscale image and the image size reduced 1/4.

       IMREAD_REDUCED_COLOR_4      = 33, 
//!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/4.

       IMREAD_REDUCED_GRAYSCALE_8  = 64, 
//!< If set, always convert image to the single channel grayscale image and the image size reduced 1/8.

       IMREAD_REDUCED_COLOR_8      = 65, 
//!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/8.

       IMREAD_IGNORE_ORIENTATION   = 128 
//!< If set, do not rotate the image according to EXIF's orientation flag.
     };

创建窗口


CV_EXPORTS_W void namedWindow(const String& winname, int flags = WINDOW_AUTOSIZE);

winname(window name):窗体名

图片显示


CV_EXPORTS_W void imshow(const String& winname, InputArray mat);

winname(window name):窗体名

若窗体未创建,会自动进行创建


CV_EXPORTS_W int waitKey(int delay = 0);

控制图片的展示时间,如设置delay=0,则表示一直展示,按SPACE停止展示

如设置delay不为0,则表示停留delay毫秒

图片保存


CV_EXPORTS_W bool imwrite( const String& filename, InputArray img,
              const std::vector<int>& params = std::vector<int>());

filename:保存的文件名

视频输出


CV_WRAP explicit VideoCapture(const String& filename, int apiPreference = CAP_ANY);
  
CV_WRAP explicit VideoCapture(const String& filename, int apiPreference, const std::vector<int>& params);

CV_WRAP explicit VideoCapture(int index, int apiPreference = CAP_ANY);

CV_WRAP explicit VideoCapture(int index, int apiPreference, const std::vector<int>& params);

filename

影片档案名称(例如video.avi)

图片序列(例如img_%02d.jpg,将读取像这样的样本img_00.jpg, img_01.jpg, img_02.jpg, …)

视频流的网址(例如protocol://host:port/script_name?script_params|auth)。请注意,每个视频流或IP摄像机源均具有其自己的URL方案。请参考源流的文档以了解正确的URL。

index

要打开的视频捕获设备的ID。要使用默认后端打开默认摄像头,只需传递0。

当apiPreference为CAP_ANY时,使用camera_id + domain_offset(CAP_ *)向后兼容有效。

apiPreference(not important)

首选使用的Capture API后端。如果有多个可用的读取器实现,则可以用于实施特定的读取器实现。

设置读取的摄像头编号,默认CAP_ANY=0,自动检测摄像头。多个摄像头时,使用索引0,1,2,…进行编号调用摄像头。 apiPreference = -1时单独出现窗口,选取相应编号摄像头。

演示


    VideoCapture video(<filename>);
    while (1){
        Mat fps;
        video>>fps;
        imshow("video",fps);
        waitKey(10);//控制帧率
    }

通道分离与合并

分离

API(一)


CV_EXPORTS void split(const Mat& src, Mat* mvbegin);

src(source):输入图像。

mvbegin(mat vector begin):分离后的Mat数组。

API(二)


CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);

m(mat):输入图像。

mv(mat vector):分离后的的Mat数组,可以使用STL容器vector。

合并

API(一)


CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);

mv(mat vector):欲合并的图像数组。

count:欲合并的图像的个数

dst(destination):输出图片。

API(二)


CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);

mv(mat vector):欲合并的图像数组,可以使用STL容器vector。

dst(destination):输出图片。

图片色彩模式转换


CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );

code:转换码

转换类型和转换码

  1. RGB和BGR(opencv默认的彩色图像的颜色空间是BGR)颜色空间的转换

cv::COLOR_BGR2RGB

cv::COLOR_RGB2BGR

cv::COLOR_RGBA2BGRA

cv::COLOR_BGRA2RGBA

  1. 向RGB和BGR图像中增添alpha通道

cv::COLOR_RGB2RGBA

cv::COLOR_BGR2BGRA

  1. 从RGB和BGR图像中去除alpha通道

cv::COLOR_RGBA2RGB

cv::COLOR_BGRA2BGR

  1. 从RBG和BGR颜色空间转换到灰度空间

cv::COLOR_RGB2GRAY

cv::COLOR_BGR2GRAY

cv::COLOR_RGBA2GRAY

cv::COLOR_BGRA2GRAY

  1. 从灰度空间转换到RGB和BGR颜色空间

cv::COLOR_GRAY2RGB

cv::COLOR_GRAY2BGR

cv::COLOR_GRAY2RGBA

cv::COLOR_GRAY2BGRA

  1. RGB和BGR颜色空间与BGR565颜色空间之间的转换

cv::COLOR_RGB2BGR565

cv::COLOR_BGR2BGR565

cv::COLOR_BGR5652RGB

cv::COLOR_BGR5652BGR

cv::COLOR_RGBA2BGR565

cv::COLOR_BGRA2BGR565

cv::COLOR_BGR5652RGBA

cv::COLOR_BGR5652BGRA

  1. 灰度空间与BGR565之间的转换

cv::COLOR_GRAY2BGR555

cv::COLOR_BGR5552GRAY

  1. RGB和BGR颜色空间与CIE XYZ之间的转换

cv::COLOR_RGB2XYZ

cv::COLOR_BGR2XYZ

cv::COLOR_XYZ2RGB

cv::COLOR_XYZ2BGR

  1. RGB和BGR颜色空间与uma色度(YCrCb空间)之间的转换

cv::COLOR_RGB2YCrCb

cv::COLOR_BGR2YCrCb

cv::COLOR_YCrCb2RGB

cv::COLOR_YCrCb2BGR

  1. RGB和BGR颜色空间与HSV颜色空间之间的相互转换

cv::COLOR_RGB2HSV

cv::COLOR_BGR2HSV

cv::COLOR_HSV2RGB

cv::COLOR_HSV2BGR

  1. RGB和BGR颜色空间与HLS颜色空间之间的相互转换

cv::COLOR_RGB2HLS

cv::COLOR_BGR2HLS

cv::COLOR_HLS2RGB

cv::COLOR_HLS2BGR

  1. RGB和BGR颜色空间与CIE Lab颜色空间之间的相互转换

cv::COLOR_RGB2Lab

cv::COLOR_BGR2Lab

cv::COLOR_Lab2RGB

cv::COLOR_Lab2BGR

  1. RGB和BGR颜色空间与CIE Luv颜色空间之间的相互转换

cv::COLOR_RGB2Luv

cv::COLOR_BGR2Luv

cv::COLOR_Luv2RGB

cv::COLOR_Luv2BGR

  1. Bayer格式(raw data)向RGB或BGR颜色空间的转换

cv::COLOR_BayerBG2RGB

cv::COLOR_BayerGB2RGB

cv::COLOR_BayerRG2RGB

cv::COLOR_BayerGR2RGB

cv::COLOR_BayerBG2BGR

cv::COLOR_BayerGB2BGR

cv::COLOR_BayerRG2BGR

cv::COLOR_BayerGR2BGR

改变图片的对比度和亮度

概述


Mat.ptr(i,j)=Mat.ptr(i,j)*a+b

a:控制对比度增益

b:控制亮度增益

手动(使用saturate_cast函数确保输出值不溢出范围)


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);
for(int i=0;i<xuenai.rows;i++){
        for(int j=0;j<xuenai.cols;j++){
            for(int k=0;k<xuenai.channels();k++) {
                xuenai.at<Vec3b>(i, j)[k] = saturate_cast<uchar>(xuenai.at<Vec3b>(i, j)[k] *                 1.2 + 30);
            }
        }
    }
imshow("xuenai_convertTo",xuenai);
waitKey();
b7e2efcd64b464644b37e44dd647be44.png

调用API:Mat::convertTo


void Mat::convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;

Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);
xuenai.convertTo(xuenai,-1,1.2,30);
imshow("xuenai_convertTo",xuenai);
waitKey();
993c663e0da5298f87999d31d5e214a4.png

可以看到效果是一样的

图片混合


CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
                              double beta, double gamma, OutputArray dst, int dtype = -1);

src(source1):输入图片1

alpha:src1的权重

src2(source2):输入图片2

beta:src2的权重

gamma:额外的增量

dst(destination):输出图片

dtype(destination type):输出图片的数据类型,-1表示与输入图片一致

图片尺寸调整


CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
                          Size dsize, double fx = 0, double fy = 0,
                          int interpolation = INTER_LINEAR );

src(source):输入图片

dst(destination):输出图片

dsize(destination size):输出图片的尺寸

fx:x方向(width方向)的缩放比例,如果它是0,那么它就会按照(double)dsize.width/src.cols来计算;

fy:y方向(height方向)的缩放比例,如果它是0,那么它就会按照(double)dsize.height/src.rows来计算;

interpolation:插值算法的选择

插值算法(not important)


enum InterpolationFlags{
    /** nearest neighbor interpolation */
    INTER_NEAREST        = 0,
    /** bilinear interpolation */
    INTER_LINEAR         = 1,
    /** bicubic interpolation */
    INTER_CUBIC          = 2,
    /** resampling using pixel area relation. It may be a preferred method for image decimation, as
    it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
    method. */
    INTER_AREA           = 3,
    /** Lanczos interpolation over 8x8 neighborhood */
    INTER_LANCZOS4       = 4,
    /** Bit exact bilinear interpolation */
    INTER_LINEAR_EXACT = 5,
    /** Bit exact nearest neighbor interpolation. This will produce same results as
    the nearest neighbor method in PIL, scikit-image or Matlab. */
    INTER_NEAREST_EXACT  = 6,
    /** mask for interpolation codes */
    INTER_MAX            = 7,
    /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
    source image, they are set to zero */
    WARP_FILL_OUTLIERS   = 8,
    /** flag, inverse transformation

    For example, #linearPolar or #logPolar transforms:
    - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$
    - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$
    */
    WARP_INVERSE_MAP     = 16
};

注意事项

使用注意事项:

  • dsize和fx/fy不能同时为0

  1. 指定dsize的值,让fx和fy空置直接使用默认值。

  1. 让dsize为0,指定好fx和fy的值,比如fx=fy=0.5,那么就相当于把原图两个方向缩小一倍。

图像金字塔(常用于神经网络的池化层,对图像进行成倍的放大或缩小)


CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
//缩小一倍

src(source):输入图片

dst(destination):输出图片

dstsize(destination size):输出图片的尺寸,默认自动调整

borderType:边界填充方式,默认为黑边。如果没有设置dstsize,则不会出现黑边,因为已经进行了自动调整


CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
//放大一倍

src(source):输入图片

dst(destination):输出图片

dstsize(destination size):输出图片的尺寸,默认自动调整

borderType:边界填充方式,默认为黑边。如果没有设置dstsize,则不会出现黑边,因为已经进行了自动调整

二值化(一般只对灰度图使用)


CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
                               double thresh, double maxval, int type );

src(source):输入图片

dst(destination):输出图片

thresh(threshold):阈值

maxval(max value):最大值

type:阈值类型

阈值类型


enum ThresholdTypes {
    THRESH_BINARY     = 0, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
    THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
    THRESH_TRUNC      = 2, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
    THRESH_TOZERO     = 3, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
    THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
    THRESH_MASK       = 7,
    THRESH_OTSU       = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
    THRESH_TRIANGLE   = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value
};

1. 阈值二值化(Threshold Binary)

  首先指定像素的灰度值的阈值,遍历图像中像素值,如果像素的灰度值大于这个阈值,则将这个像素设置为最大像素值(8位灰度值最大为255);若像素的灰度值小于阈值,则将该像素点像素值赋值为0。公式以及示意图如下:

format,png

 

2. 阈值反二值化(Threshold Binary Inverted)

  首先也要指定一个阈值,不同的是在对图像进行阈值化操作时与阈值二值化相反,当像素的灰度值超过这个阈值的时候为该像素点赋值为0;当该像素的灰度值低于该阈值时赋值为最大值。公式及示意图如下:

format,png

 

3. 截断(Truncate)

  给定像素值阈值,在图像中像素的灰度值大于该阈值的像素点被设置为该阈值,而小于该阈值的像素值保持不变。公式以及示意图如下:

format,png

 

4. 阈值取零(Threshold To Zero)

  与截断阈值化相反,像素点的灰度值如果大于该阈值则像素值不变,如果像素点的灰度值小于该阈值,则该像素值设置为0.公式以及示意图如下:

format,png

 

5. 阈值反取零(Threshold To Zero Inverted)

  像素值大于阈值的像素赋值为0,而小于该阈值的像素值则保持不变,公式以及示意图如下:

format,png

图片裁剪

方式一


inline
Mat Mat::operator()( const Rect& roi ) const
{
    return Mat(*this, roi);
}

以下为实例


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);
Mat tuanzi(xuenai,(Rect(0,0,500,1000)));
imshow("tuanzi",tuanzi);
waitKey();

方式二


Mat::Mat(const Mat& m, const Rect& roi);

以下为实例


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);
Mat tuanzi(xuenai(Rect(0,0,500,1000)));
imshow("tuanzi",tuanzi);
waitKey();
c9287e3ebd7323425f93136e295d9520.png

Rect类构造


template<typename _Tp> inline
Rect_<_Tp>::Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height)
    : x(_x), y(_y), width(_width), height(_height) {}

template<typename _Tp> inline
Rect_<_Tp>::Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz)
    : x(org.x), y(org.y), width(sz.width), height(sz.height) {}

template<typename _Tp> inline
Rect_<_Tp>::Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2)
{
    x = std::min(pt1.x, pt2.x);
    y = std::min(pt1.y, pt2.y);
    width = std::max(pt1.x, pt2.x) - x;
    height = std::max(pt1.y, pt2.y) - y;
}

基本变换

翻转


CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);

src(source):输入图片

dst(destination):输出图片

flipCode:翻转类型


flipcode==0;//上下翻转
flipcod>0;//左右翻转
flipcode<0;//上下加左右翻转,等价于旋转180°

效果


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);
Mat xuenai_flip(xuenai.size(), xuenai.type());
flip(xuenai, xuenai_flip, 0);
imshow("xuenai_flip", xuenai_flip);
waitKet();
70f761e1d290b86c09e86d8f06064966.png

 

90°旋转


CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode);
enum RotateFlags {
    ROTATE_90_CLOCKWISE = 0, //!<Rotate 90 degrees clockwise
    ROTATE_180 = 1, //!<Rotate 180 degrees clockwise
    ROTATE_90_COUNTERCLOCKWISE = 2, //!<Rotate 270 degrees clockwise
};

src(source):输入图片

dst(destination):输出图片

rotateCode:旋转类型

效果


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);
Mat xuenai_rotate(xuenai.size(), xuenai.type());
rotate(xuenai, xuenai_rotate, ROTATE_180);
imshow("xuenai_rotate", xuenai_rotate);
waitKet();
3e94e01efc69bfa6afdf088e557d42ed.png

 

仿射变换与透射变换


CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
                              InputArray M, Size dsize,
                              int flags = INTER_LINEAR,
                              int borderMode = BORDER_CONSTANT,
                              const Scalar& borderValue = Scalar());

src(source):输入图片

dst(destination):输出图片

M:变换矩阵

dsize(destination size):输出图片的尺寸,若不对输出图片的尺寸进行调整,那么很可能会出现黑边

flags:插值算法

borderMode:边界外推法

borderValue:填充边界的值

平移

只需将变换矩阵M设置成如下形式:


float delta_x=200,delta_y=200;
float  M_values[]={1,0,delta_x,
                   0,1,delta_y};
Mat M(Size(3,2),CV_32F,M_values);

delta_x:x方向上的偏移量

delta_y:y方向上的偏移量

M_values:必须是浮点类型的数组对象

M:必须是CV_32F,不能用逗号式分隔创建

效果


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai",xuenai);
double  M_values[]={1,0,200,
                    0,1,200};
Mat M(Size(3,2), CV_64F,M_values);
Mat xuenai_shift(xuenai.size(),xuenai.type());
warpAffine(xuenai,xuenai_shift,M,xuenai.size());
imshow("xuenai_shift",xuenai_shift);
waitKet();
7f105c614ba5461f70b7f128e0649b71.png

 

任意角度旋转

获得变换矩阵M


inline
Mat getRotationMatrix2D(Point2f center, double angle, double scale)
{
    return Mat(getRotationMatrix2D_(center, angle, scale), true);
}

center:旋转中心点的坐标

angle:逆时针偏角

scale:生成图与原图之比

效果


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);
Mat M= getRotationMatrix2D(Point2f(xuenai.cols/2,xuenai.rows/2),45,1);
Mat xuenai_rotate(xuenai.size(),xuenai.type());
warpAffine(xuenai,xuenai_rotate,M,xuenai.size());
imshow("xuenai_flip",xuenai_rotate);
9158db3c5dd944878782b4928eff71b7.png

 

仿射(不破坏几何关系)

获得变换矩阵M


CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );

src[](source[]):输入图片的坐标点集,含三个坐标点

dst[](destination[]):三个坐标点变换的目标位置

透射(破坏几何关系)

已知变换后图片,逆推变换矩阵M


CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU);

src(source):输入图片

dst(destination):输出图片

获得变换矩阵M


CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU);

src[](source[]):输入图片的坐标点集,含四个坐标点

dst[](destination[]):四个坐标点变换的目标位置

滤波及边缘检测

均值滤波

卷积核形状


Mat kernal=Mat::ones(Size(ksize,ksize),CV_64F)/(ksize*ksize);

API


CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
                        Size ksize, Point anchor = Point(-1,-1),
                        int borderType = BORDER_DEFAULT );

src(source):输入图片

dst(destination):输出图片

ksize(kernal size):卷积核大小,必须是正奇数

anchor:滤波器中心像素位置,取(-1,-1)表示几何中心

borderType:边界填充方式,默认为黑边

效果


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai",xuenai);
Mat xuenai_blur(xuenai.size(),xuenai.type());
blur(xuenai,xuenai_blur,Size(3,5));
imshow("xuenai_blur",xuenai_blur);
waitKet();
58abe911809f04f906b8d7493ca63f7e.png

 

高斯滤波

卷积核形状

二维高斯函数表述为:

cc5fefc9b67c9c9c1d48e477c9e3f6a0.jpeg

 

 

对应图形:

 

1d7931bf4a17d8d3c5b7a0eb387de151.png

 

代码实现(不区分sigmaX与sigmaY)


void GetGaussianKernel(Mat kernal, const int ksize,const double sigma)  
{  
    const double PI=4.0*atan(1.0); //圆周率π赋值  
    int center= ksize/2;  
    double sum=0;  
    for(int i=0;i<ksize;i++)  
    {  
        for(int j=0;j<ksize;j++)  
        {  
            kernal.ptr(i,j)=(1/(2*PI*sigma*sigma))*exp(-((i-center)*(i-center)+(j-center)*(j-center))/(2*sigma*sigma));  
            sum+=kernal.ptr(i,j);  
        }  
    }  

    for(int i=0;i<ksize;i++)  
    {  
        for(int j=0;j<ksize;j++)  
        {  
            kernal.ptr(i,j)/=sum;  
        }  
    }  
    return ;  
} 

API


CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
                                double sigmaX, double sigmaY = 0,
                                int borderType = BORDER_DEFAULT );

src(source):输入图片

dst(destination):输出图片

ksize(kernal size):卷积核大小。如果这个值我们设其为非正数,那么OpenCV会从第五个参数sigmaSpace来计算出它来。

sigmaX:x方向上的标准差

sigmaY:y方向上的标准差。默认输入量为0,则将其设置为等于sigmaX,如果两个轴的标准差均为0,则根据输入的高斯滤波器尺寸计算标准偏差。

borderType:边界填充方式,默认为黑边

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));
    imshow("xuenai",xuenai);
    Mat xuenai_Gauss(xuenai.size(),xuenai.type());
    GaussianBlur(xuenai,xuenai_Gauss,Size(-1,-1),10);
    imshow("xuenai_Gauss",xuenai_Gauss);
    waitKet();
afbbea3aa370d7e3681fc0d87bae5651.png

 

中值滤波

原理

取滤波器内的中值作为输出,可以很好的抑制椒盐噪声

API


CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );

src(source):输入图片

dst(destination):输出图片

ksize(kernal size):卷积核边长,必须是正奇数

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));
    imshow("xuenai",xuenai);
    Mat xuenai_median(xuenai.size(),xuenai.type());
    medianBlur(xuenai,xuenai_median,5);
    imshow("xuenai_median",xuenai_median);
    waitKet();
c91cc4aeca7b99942ded833a0af65a58.png

 

高斯双边滤波

原理

双边滤波器的好处是可以做边缘保存(edge preserving),一般用高斯滤波去降噪,会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

f17fcb74f9bc2ed38f753d75473c4bfd.png

 

API


CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
                                   double sigmaColor, double sigmaSpace,
                                   int borderType = BORDER_DEFAULT );

src(source):输入图片

dst(destination):输出图片

d:卷积核边长。如果这个值我们设其为非正数,那么OpenCV会从第五个参数sigmaSpace来计算出它来。

sigmaColor:颜色空间滤波器的sigma值。这个参数的值越大,就表明该像素邻域内有更宽广的颜色会被混合到一起,产生较大的半相等颜色区域。

sigmaSpace:坐标空间中滤波器的sigma值,坐标空间的标注方差。他的数值越大,意味着越远的像素会相互影响,从而使更大的区域足够相似的颜色获取相同的颜色。当d>0,卷积核大小已被指定且与sigmaSpace无关。否则,d正比于sigmaSpace。

borderType:边界填充方式,默认为黑边

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));
    imshow("xuenai",xuenai);
    Mat xuenai_bilateral(xuenai.size(),xuenai.type());
    bilateralFilter(xuenai,xuenai_bilateral,-1,100,10);
    imshow("xuenai_bilateral",xuenai_bilateral);
    waitKet();
138c93e391ac073ff7158944a2a8aa9d.png

 

获取用来形态学操作的滤波器


CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
enum MorphShapes {
    MORPH_RECT    = 0, //!< a rectangular structuring element:  \f[E_{ij}=1\f]
    MORPH_CROSS   = 1, //!< a cross-shaped structuring element:
                       //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f]
    MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed
                      //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height)
};

shape:滤波器形状

ksize(kernal size):滤波器大小

anchor:滤波器中心像素位置,取(-1,-1)表示几何中心

腐蚀和膨胀(一般对二值图)

原理

腐蚀:取滤波器内的最小值作为输出

膨胀:取滤波器内的最大值作为输出

腐蚀API


CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
                         Point anchor = Point(-1,-1), int iterations = 1,
                         int borderType = BORDER_CONSTANT,
                         const Scalar& borderValue = morphologyDefaultBorderValue() );

src(source):输入图片

dst(destination):输出图片

kernal:滤波器矩阵

anchor:滤波器中心像素位置,取(-1,-1)表示几何中心

iterations:执行erode函数的次数,默认执行一次

borderType:边界填充方式

borderValue:填充边界的值

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));

    Mat xuenai_gray(xuenai.size(),xuenai.type());
    cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);
    Mat xuenai_threshold(xuenai.size(),xuenai.type());
    threshold(xuenai_gray,xuenai_threshold,100,255,THRESH_BINARY);
    imshow("xuenai_threshold",xuenai_threshold);

    Mat kernal=getStructuringElement(MORPH_RECT,Size(3,3));

    Mat xuenai_erode(xuenai.size(),xuenai.type());
    erode(xuenai_threshold,xuenai_erode,kernal);
    imshow("xuenai_erode",xuenai_erode);
    waitKet();
531eeb1bbdf8a0e8e860f7e05f48563c.png

 

膨胀API


CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
                          Point anchor = Point(-1,-1), int iterations = 1,
                          int borderType = BORDER_CONSTANT,
                          const Scalar& borderValue = morphologyDefaultBorderValue() );

src(source):输入图片

dst(destination):输出图片

kernal:滤波器矩阵

anchor:滤波器中心像素位置,取(-1,-1)表示几何中心

iterations:执行erode函数的次数

borderType:边界填充方式

borderValue:填充边界的值

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));

    Mat xuenai_gray(xuenai.size(),xuenai.type());
    cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);
    Mat xuenai_threshold(xuenai.size(),xuenai.type());
    threshold(xuenai_gray,xuenai_threshold,100,255,THRESH_BINARY);
    imshow("xuenai_threshold",xuenai_threshold);

    Mat kernal=getStructuringElement(MORPH_RECT,Size(3,3));

    Mat xuenai_dilate(xuenai.size(),xuenai.type());
    dilate(xuenai_threshold,xuenai_dilate,kernal);
    imshow("xuenai_dilate",xuenai_dilate);
    waitKet();
ad14f6a45a0a0fa126ea7ef3f08f8332.png

 

形态学操作(一般对二值图)

API


CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
                                int op, InputArray kernel,
                                Point anchor = Point(-1,-1), int iterations = 1,
                                int borderType = BORDER_CONSTANT,
                                const Scalar& borderValue = morphologyDefaultBorderValue() );

src(source):输入图片

dst(destination):输出图片

op:变换类型

kernal:滤波器矩阵

anchor:滤波器中心像素位置,取(-1,-1)表示几何中心

iterations:执行erode函数的次数

borderType:边界填充方式

borderValue:填充边界的值

变换类型


enum MorphTypes{
    MORPH_ERODE    = 0, //腐蚀

    MORPH_DILATE   = 1, //膨胀

    MORPH_OPEN     = 2, //开
                        
    MORPH_CLOSE    = 3, //闭
                        
    MORPH_GRADIENT = 4, //形态学梯度
                        
    MORPH_TOPHAT   = 5, //顶帽
                        
    MORPH_BLACKHAT = 6, //黑帽

    MORPH_HITMISS  = 7  //击中击不中变换

};

原理

对输入图片先进行腐蚀,然后进行膨胀。可以用来屏蔽与滤波器大小相当的亮部

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));

    Mat xuenai_gray(xuenai.size(),xuenai.type());
    cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);
    Mat xuenai_threshold(xuenai.size(),xuenai.type());
    threshold(xuenai_gray,xuenai_threshold,100,255,THRESH_BINARY);
    imshow("xuenai_threshold",xuenai_threshold);

    Mat kernal=getStructuringElement(MORPH_RECT,Size(3,3));

    Mat xuenai_morphology(xuenai.size(),xuenai.type());
    morphologyEx(xuenai_threshold,xuenai_morphology,MORPH_OPEN,kernal);
    imshow("xuenai_morphology",xuenai_morphology);
    waitKet();
902553d8957f0da5c0a5d69a391ea35d.png

 

原理

对输入图片先进行膨胀,然后进行腐蚀。可以用来屏蔽与滤波器大小相当的暗部

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));

    Mat xuenai_gray(xuenai.size(),xuenai.type());
    cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);
    Mat xuenai_threshold(xuenai.size(),xuenai.type());
    threshold(xuenai_gray,xuenai_threshold,100,255,THRESH_BINARY);
    imshow("xuenai_threshold",xuenai_threshold);

    Mat kernal=getStructuringElement(MORPH_RECT,Size(3,3));
    
    Mat xuenai_morphology(xuenai.size(),xuenai.type());
    morphologyEx(xuenai_threshold,xuenai_morphology,MORPH_CLOSE,kernal);
    imshow("xuenai_morphology",xuenai_morphology);
    waitKet();
6a128713ef826c4167e19546f637a2ea.png

 

顶帽

原理

对输入图片先进行开操作,然后原图-开操作图。可以用来提取与滤波器大小相当的亮部

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));

    Mat xuenai_gray(xuenai.size(),xuenai.type());
    cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);
    Mat xuenai_threshold(xuenai.size(),xuenai.type());
    threshold(xuenai_gray,xuenai_threshold,100,255,THRESH_BINARY);
    imshow("xuenai_threshold",xuenai_threshold);

    Mat kernal=getStructuringElement(MORPH_RECT,Size(3,3));

    Mat xuenai_morphology(xuenai.size(),xuenai.type());
    morphologyEx(xuenai_threshold,xuenai_morphology,MORPH_TOPHAT,kernal);
    imshow("xuenai_morphology",xuenai_morphology);
    waitKet();
d522ac02e466f4f02fd59d954ce013a8.png

 

黑帽

原理

对输入图片先进行闭操作,然后闭操作图-原图。可以用来提取与滤波器大小相当的暗部

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));

    Mat xuenai_gray(xuenai.size(),xuenai.type());
    cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);
    Mat xuenai_threshold(xuenai.size(),xuenai.type());
    threshold(xuenai_gray,xuenai_threshold,100,255,THRESH_BINARY);
    imshow("xuenai_threshold",xuenai_threshold);

    Mat kernal=getStructuringElement(MORPH_RECT,Size(3,3));

    Mat xuenai_morphology(xuenai.size(),xuenai.type());
    morphologyEx(xuenai_threshold,xuenai_morphology,MORPH_BLACKHAT,kernal);
    imshow("xuenai_morphology",xuenai_morphology);
    waitKet();
c5ad0f304b617d9a148d01440e3e62c3.png

 

形态学梯度

原理

膨胀图与腐蚀图之差。可以用来提取边界轮廓,但提取效果比不上专业的边缘检测算法。

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));

    Mat xuenai_gray(xuenai.size(),xuenai.type());
    cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);
    Mat xuenai_threshold(xuenai.size(),xuenai.type());
    threshold(xuenai_gray,xuenai_threshold,100,255,THRESH_BINARY);
    imshow("xuenai_threshold",xuenai_threshold);

    Mat kernal=getStructuringElement(MORPH_RECT,Size(3,3));

    Mat xuenai_morphology(xuenai.size(),xuenai.type());
    morphologyEx(xuenai_threshold,xuenai_morphology,MORPH_GRADIENT,kernal);
    imshow("xuenai_morphology",xuenai_morphology);
    waitKet();
5712cdcaca8ae1f89c24be981966138d.png

 

击中击不中变换

原理

击中击不中变换由下面三步构成:

用结构元素B1来腐蚀输入图像

用结构元素B2来腐蚀输入图像的补集

前两步结果的与运算

结构元素B1和B2可以结合为一个元素B。例如:

2e1ddda21651ae51a0c9d9f729746ff9.png

结构元素:左B1(击中元素),中B2(击不中元素),右B(两者结合)

本例中,我们寻找这样一种结构模式,中间像素属于背景,其上下左右属于前景,其余领域像素忽略不计(背景为黑色,前景为白色)。然后用上面的核在输入图像中找这种结构。从下面的输出图像中可以看到,输入图像中只有一个位置满足要求。

84d9c33f191aaf4fcb7897d98ea5cabe.png

输入二值图像

be82310d27f67a0e75f8ad37d7b2f6e9.png

输出二值图像

选择合适的边缘检测输出图像的深度

参照以下表格

int sdepth

int ddepth

CV_8U

CV_16S/CV_32F/CV_64F

CV_16U/CV_16S

CV_32F/CV_64F

CV_32F

CV_32F/CV_64F

CV_64F

CV_64F

convertScaleAbs恢复深度为CV_8U


CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
                                  double alpha = 1, double beta = 0);

src(source):输入图片

dst(destination):输出图片

sobel

卷积核形状(ksize=3)


Mat kernalX=Mat_<int>(Size(3,3))<<(-1,0,1
                                    -2,0,2
                                    -1,0,1);
Mat kernalY=Mat_<int>(Size(3,3))<<(-1,-2,1
                                     0,0,0
                                     1,2,1);

 

API


CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
                         int dx, int dy, int ksize = 3,
                         double scale = 1, double delta = 0,
                         int borderType = BORDER_DEFAULT );

src(source):输入图片

dst(destination):输出图片

ddepth(destination depth):输出图片的深度(CV_16F)

dx:x方向导数的阶数,一般取1

dy:y方向导数的阶数,一般取1

ksize:卷积核边长,默认为3

scale:生成图与原图的缩放比例,默认为1

delta:额外的增量,默认为0

borderType:边界填充方式,默认为黑边

流程

  1. 用cvtColor函数转灰度图

  1. 在x,y方向上分别各调用一次Sobel

  1. 用convertScaleAbs函数转换到原格式,否则无法显示

  1. 用addWeighted函数把两张输出图片加在一起

同时在x,y方向上调用Sobel和分开调用的效果对比


Mat xuenai = imread("xuenai.jpg");
resize(xuenai,xuenai,Size(1000,1000));
imshow("xuenai", xuenai);

//转灰度图
Mat xuenai_gray(xuenai.size(),xuenai.type());
cvtColor(xuenai,xuenai_gray,COLOR_BGR2GRAY);

//同时在x,y方向上调用Sobel
Mat xuenai_sobel1(xuenai.size(),xuenai.type());
Sobel(xuenai_gray,xuenai_sobel1,CV_16S,1,1,3);
convertScaleAbs(xuenai_sobel1,xuenai_sobel1);
imshow("xuenai_sobel1",xuenai_sobel1);

//在x,y方向上分别各调用一次Sobel
Mat xuenai_xsobel(xuenai.size(),xuenai.type());Mat xuenai_ysobel(xuenai.size(),xuenai.type());Mat xuenai_sobel2(xuenai.size(),xuenai.type());
Sobel(xuenai_gray,xuenai_xsobel,CV_16S,1,0,3);
convertScaleAbs(xuenai_xsobel,xuenai_xsobel);
Sobel(xuenai_gray,xuenai_ysobel,CV_16S,0,1,3);
convertScaleAbs(xuenai_ysobel,xuenai_ysobel);
addWeighted(xuenai_xsobel,0.5,xuenai_ysobel,0.5,0,xuenai_sobel2);
convertScaleAbs(xuenai_sobel2,xuenai_sobel2);
imshow("xuenai_sobel2",xuenai_sobel2);
waitKey();
aa3bab539aef219a325a9e21db7b7e0b.png

可以看到效果差了很多

scharr

卷积核形状(ksize恒定为3)

虽然Sobel算子可以有效的提取图像边缘,但是对图像中较弱的边缘提取效果较差。因此为了能够有效的提取出较弱的边缘,需要将像素值间的差距增大,因此引入Scharr算子。Scharr算子是对Sobel算子差异性的增强,因此两者之间的在检测图像边缘的原理和使用方式上相同。


Mat kernalX=Mat_<int>(Size(3,3))<<(-3,0,3
                                    -10,0,10
                                    -3,0,3);
Mat kernalY=Mat_<int>(Size(3,3))<<(-3,-10,3
                                     0,0,0
                                     3,10,3);

API


CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
                          int dx, int dy, double scale = 1, double delta = 0,
                          int borderType = BORDER_DEFAULT );

src(source):输入图片

dst(destination):输出图片

ddepth(destination depth):输出图片的深度(CV_16F)

dx:x方向导数的阶数,一般取1

dy:y方向导数的阶数,一般取1

scale:生成图与原图的缩放比例,默认为1

delta:额外的增量,默认为0

borderType:边界填充方式,默认为黑边

流程

  1. 用cvtColor函数转灰度图

  1. 在x,y方向上分别各调用一次Scharr

  1. 用convertScaleAbs函数转换到原格式,否则无法显示

  1. 用addWeighted函数把两张输出图片加在一起

Laplacian

卷积核形状(ksize=3)


Mat kernal=Mat_<int>(Size(3,3))<<(0,-1,0
                                   -1,4,-1
                                   0,-1,0);

Laplacian算子的卷积核形状决定了它对噪声非常敏感,因此,通常需要通过滤波平滑处理

API


CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
                             int ksize = 1, double scale = 1, double delta = 0,
                             int borderType = BORDER_DEFAULT );

src(source):输入图片

dst(destination):输出图片

ddepth(destination depth):输出图片的深度(CV_16F)

scale:生成图与原图的缩放比例,默认为1

delta:额外的增量,默认为0

borderType:边界填充方式,默认为黑边

流程

  1. 用中值滤波等操作平滑处理

  1. 用cvtColor函数转灰度图

  1. 用Laplacian函数处理

  1. 用convertScaleAbs函数转换到原格式,否则无法显示

Canny(recommended)

API


CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
                         double threshold1, double threshold2,
                         int apertureSize = 3, bool L2gradient = false );

image:输入图片

edges:输出图片

threshold1:最小阈值

threshold2:最大阈值

高于threshold2被认为是真边界,低于threshold1被抛弃,介于二者之间,则取决于是否与真边界相连。

apertureSize:Sobel卷积核的大小,默认为3。核越大,对噪声越不敏感,但是边缘检测的错误也会随之增加

L2gradient:计算图像梯度幅度的标识,默认为false,表示L1范数(直接将两个方向的导数的绝对值相加)。如果使用true,表示L2范数(两个方向的导数的平方和再开方)

流程

  1. 用中值滤波等操作平滑处理

  1. 用Canny函数处理

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));
    imshow("xuenai",xuenai);

    Mat xuenai_canny(xuenai.size(),xuenai.type());
    Canny(xuenai,xuenai_canny,60,150);
    imshow("xuenai_canny",xuenai_canny);
    waitKet();
68d4885fec5a24f7601ba7f8125b92f8.png

 

画几何图形

直线

API


CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,int thickness = 1, int lineType = LINE_8, int shift = 0);

img(image):输入图片

pt1(point1):端点1

pt2(point2):端点2

color:颜色

thickness:粗细

lineType:连通类型

shift:坐标点小数点位数(not important)

连通类型


enum LineTypes {
    FILLED  = -1,
    LINE_4  = 4, //!< 4-connected line
    LINE_8  = 8, //!< 8-connected line
    LINE_AA = 16 //!< antialiased line
};
  • LINE_4与LINE_8差别不大,而LINE_AA的抗锯齿效果显著

正矩形

API


CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
                          const Scalar& color, int thickness = 1,
                          int lineType = LINE_8, int shift = 0);

img(image):输入图片

pt1(point1):左上角端点

pt2(point2):右下角端点

color:颜色

thickness:粗细

lineType:连通类型

shift:坐标点小数点位数(not important)


CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec,
                          const Scalar& color, int thickness = 1,
                          int lineType = LINE_8, int shift = 0);

img(image):输入图片

rec(rect):一个矩形

color:颜色

thickness:粗细

lineType:连通类型

shift:坐标点小数点位数(not important)

圆形

API


CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
                       const Scalar& color, int thickness = 1,
                       int lineType = LINE_8, int shift = 0);

img(image):输入图片

center:圆心坐标

radius:半径

color:颜色

thickness:粗细。若取负值,则表示进行填充

lineType:连通类型

shift:坐标点小数点位数(not important)

椭圆

API


CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
                        double angle, double startAngle, double endAngle,
                        const Scalar& color, int thickness = 1,
                        int lineType = LINE_8, int shift = 0);

img(image):输入图片

center:圆心坐标

axes:(x方向上半轴长,y方向上半轴长)

angle:顺时针偏角

startAngle:以x方向上的半轴为起点,偏移一定角度后的起点,从此起点开始画椭圆

endAngle:以x方向上的半轴为起点,偏移一定角度后的终点,到此为止结束画椭圆

确定起点和终点后,顺时针方向画

color:颜色

thickness:粗细。若取负值,则表示进行填充

lineType:连通类型

shift:坐标点小数点位数(not important)

效果


Mat canvas(Size(1000,1000),CV_8U,Scalar(255));
ellipse(canvas,Point2f(500,500),Size(50,100),0,0,90,Scalar(0,0,0),5);
imshow("canvas",canvas);
waitKey();
33275aeecbcf1c3dff854115278ca7d2.png

Mat canvas(Size(1000,1000),CV_8U,Scalar(255));
ellipse(canvas,Point2f(500,500),Size(50,100),20,0,360,Scalar(0,0,0),5);
imshow("canvas",canvas);
waitKey();
993933383b80f7f8e605b751afac287f.png

Mat canvas(Size(1000,1000),CV_8U,Scalar(255));
ellipse(canvas,Point2f(500,500),Size(50,100),20,0,180,Scalar(0,0,0),5);
imshow("canvas",canvas);
waitKey();
6bf03e19bb583771643dfb211a6a9d2e.png

斜矩形

API(通过RotatedRect类和line函数实现)


class CV_EXPORTS RotatedRect
{
public:
    //! default constructor
    RotatedRect();
   
    /*center:质心坐标
      size:(x方向上全边长,y方向上全边长)
      angle:顺时针偏角
    */
    RotatedRect(const Point2f& center, const Size2f& size, float angle);

    /**
    三点确定一矩形,记得要互相垂直
     */
    RotatedRect(const Point2f& point1, const Point2f& point2, const Point2f& point3);

    /** 返回四个角点坐标,要用Point2f类型的数组对象作为参数传入,不能是仅仅是Point类型的数组对象*/
    void points(Point2f pts[]) const;

    //! returns the minimal up-right integer rectangle containing the rotated rectangle
    Rect boundingRect() const;

    //! returns the minimal (exact) floating point rectangle containing the rotated rectangle, not intended for use with images
    Rect_<float> boundingRect2f() const;

    //! returns the rectangle mass center
    Point2f center;

    //! returns width and height of the rectangle
    Size2f size;

    //! returns the rotation angle. When the angle is 0, 90, 180, 270 etc., the rectangle becomes an up-right rectangle.
    float angle;
};

下面是自定义的一个快捷画斜矩形的函数


void drawRotatedRect(InputOutputArray img, RotatedRect rRect,const Scalar& color, int thickness = 1,int lineType = LINE_8, int shift = 0){
    Point2f vertices[4];
    rRect.points(vertices);
    for(int i=0;i<4;i++){
        line(img,vertices[i],vertices[(i+1)%4],color,lineType,shift);
    }
}

Trackbar控件

createTrackbar创建滚动条

API


CV_EXPORTS int createTrackbar(const String& trackbarname, const String& winname,
                              int* value, int count,
                              TrackbarCallback onChange = 0,
                              void* userdata = 0);

trackbarname:滚动条名字

winname(window name):窗体名字。要先用nameWindow创建好同名窗体,滚动条才会出现

value:欲控制的变量的地址

count:欲控制的变量的最大值(最小为0)

onChange:回调函数,默认为空。如果想要传入,那么其参数是固定的


void onChange(int,void*);

userdata:万能指针,默认为空。如果想要传入,通常用一个类的对象的地址。

getTrackbarPos获得滚动条当前的值


CV_EXPORTS_W int getTrackbarPos(const String& trackbarname, const String& winname);

trackbarname:滚动条名字

winname(window name):窗体名字

使用方式一(recommended)

原理

不使用createTrackbar函数的参数value、onChange、userdata参数。通过while(1)的无限循环,在循环中不断地用getTrackbarPos函数动态地获取滚动条的值,然后在循环内部用这些值进行操作。

效果


    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));
    imshow("xuenai",xuenai);

    namedWindow("xuenai_rotate");
    Mat xuenai_rotate(xuenai.size(), xuenai.type());
    createTrackbar("angle","xuenai_rotate", nullptr,360);
    while (1) {
        int angle= getTrackbarPos("angle","xuenai_rotate");
        Mat M = getRotationMatrix2D(Point2f(xuenai.cols / 2, xuenai.rows / 2), angle, 1);
        warpAffine(xuenai, xuenai_rotate, M, xuenai.size());
        imshow("xuenai_rotate",xuenai_rotate);
        waitKey(20);
    }
3a657c8be410de7c40889aba8c3e9b4f.png
c71e4808d26c849f213136fd7920cf1f.png

 

使用方式二

原理

不使用getTrackbarPos函数,使用createTrackbar的全部参数,在onChange回调函数中完成所有操作,由于回调函数的参数表是固定的,因此需要userdata传入所需数据。在每次移动滚动条时,相当于调用了一次回调函数,就完成了操作。结尾没有waitKey(0)就显示不了多久。

效果


class TrackbarUserdata{
public:
    Mat input;
    Mat output;
    int angle=0;
    string winname;
};

void RotateonChange(int,void *userdata) {

    TrackbarUserdata *data = (TrackbarUserdata *) userdata;
    int rows = data->input.rows;
    int cols = data->output.cols;
    Mat M = getRotationMatrix2D(Point2f(rows / 2, cols / 2), data->angle, 1);
    warpAffine(data->input,data->output,M,data->input.size());
    imshow(data->winname,data->output);
    waitKey(10);

}
int main(){
    Mat xuenai = imread("xuenai.jpg");
    resize(xuenai,xuenai,Size(1000,1000));
    imshow("xuenai",xuenai);

    Mat xuenai_rotate(xuenai.size(), xuenai.type());
    
    TrackbarUserdata userdata;
    userdata.input=xuenai;
    userdata.output=xuenai_rotate;
    userdata.winname="xuenai_rotate";
    namedWindow(userdata.winname);
    createTrackbar("angle",userdata.winname, &userdata.angle,360, RotateonChange,&userdata);
    waitKey();
    
    return 0;
}
d103d51d7b8831a785f43a41a5721e96.png
3c6cebebb3b3a5df2a42409f8bf5f910.png

轮廓检测(一般对二值图)

查找轮廓

API


CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours,
                              OutputArray hierarchy, int mode,
                              int method, Point offset = Point());

/** @overload */
CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours,
                              int mode, int method, Point offset = Point());

image:输入图片

contours:保存输出轮廓的点坐标。通常用vector<vector<Point>>数据类型担任,通过Point可以看出存储的是坐标。

hierarchy:可选参数,保存输出轮廓的层级关系。通常用vector<Vec4i>数据类型担任。

hierarchy[i][0]:第i个轮廓的同一层级后一个轮廓的索引编号。

hierarchy[i][1]:第i个轮廓的同一层级前一个轮廓的索引编号。

hierarchy[i][2]:第i个轮廓的子轮廓的索引编号。

hierarchy[i][3]:第i个轮廓的父轮廓的索引编号。

如果当前轮廓没有对应的后一个轮廓、前一个轮廓、父轮廓或内嵌轮廓的话,则hierarchy[i][0] ~hierarchy[i][3]的相应位被设置为默认值-1。

mode:轮廓层级的检测模式。

method:轮廓坐标点的储存方式

offset:额外偏移量,在每一个检测出的轮廓点上加上该偏移量,可以是负值。当所分析图像是另外一个图像的ROI的时候,通过加减这个偏移量,可以把ROI图像的检测结果投影到原始图像对应位置上。

轮廓层级检测模式:索引号(层级)


enum RetrievalModes {
    /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
    all the contours. */
    RETR_EXTERNAL  = 0,
    /** retrieves all of the contours without establishing any hierarchical relationships. */
    RETR_LIST      = 1,
    /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
    level, there are external boundaries of the components. At the second level, there are
    boundaries of the holes. If there is another contour inside a hole of a connected component, it
    is still put at the top level. */
    RETR_CCOMP     = 2,
    /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
    RETR_TREE      = 3,
};

RETR_EXTERNAL(索引顺序:从右下到左上)

只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略

7f5f90c360b3c59d1476e39d2b2b1a67.jpeg

 

RETR_LIST(recommended)(索引顺序:从右下到左上,由外到内)

检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立层级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓,所以hierarch[i]向量内所有元素的第3、第4个分量都会被置为-1。

3d6138b08ef9183a15d84b51d9801f7d.jpeg

 

RETR_CCOMP(not recommended)(索引顺序:由内到外,从右下到左上)

检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层

1cc4f63509067367d9b80d39b5f8a1d5.jpeg

 

RETR_TREE(recommended)

检测所有轮廓,所有轮廓建立一个等级树结构。外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。

57786d887258ee35096957e6d917f62f.jpeg

轮廓坐标点储存方式


enum ContourApproximationModes {
    /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
    (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
    max(abs(x1-x2),abs(y2-y1))==1. */
    CHAIN_APPROX_NONE      = 1,
    /** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
    For example, an up-right rectangular contour is encoded with 4 points. */
    CHAIN_APPROX_SIMPLE    = 2,
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
    CHAIN_APPROX_TC89_L1   = 3,
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
    CHAIN_APPROX_TC89_KCOS = 4
};

CHAIN_APPROX_NONE:保存物体边界上所有连续的轮廓点到contours向量内

CHAIN_APPROX_SIMPLE(recommended):仅保存轮廓的拐点信息,把所有轮廓拐点处的点保存入contours向量内,拐点与拐点之间直线段上的信息点不予保留,效率比较高。

CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS:使用tehChinl chain 近似算法(not important)

绘制轮廓

API


CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
                              int contourIdx, const Scalar& color,
                              int thickness = 1, int lineType = LINE_8,
                              InputArray hierarchy = noArray(),
                              int maxLevel = INT_MAX, Point offset = Point() );

image:输入图片

contours:输入轮廓数组

contourIdx(contour index):欲绘制的轮廓的索引值,输入-1可以绘制所有轮廓

color:绘制颜色

thickness:线条粗细,默认为1。输入-1则表示填充。

lineType:连通类型。

hierarchy:可选的层次结构信息。它仅在当你需要绘制一些轮廓线时被使用。(详见参数maxLevel)默认为noArray(),返回一个空数组。

maxLevel:绘制轮廓线的最高级别。此参数仅在参数hierarchy有效时被考虑。

  • 如果为0,只有被指定的轮廓被绘制。

  • 如果为1,绘制被指定的轮廓和其下一级轮廓

  • 如果为2,绘制被指定的轮廓和其所有子轮廓

offset:额外偏移量。

轮廓面积和周长

面积(非原地算法)


CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );

contour:某一个轮廓,数据类型vector<Point>

oriented: 有方向的区域标志。(not important)

  1. true: 此函数依赖轮廓的方向(顺时针或逆时针)返回一个已标记区域的值。

  1. false: 默认值。意味着返回不带方向的绝对值。

此函数利用格林公式计算轮廓的面积。对于具有自交点的轮廓,该函数几乎肯定会给出错误的结果。

周长(非原地算法)


CV_EXPORTS_W double arcLength( InputArray curve, bool closed );

curve:某一个轮廓,数据类型vector<Point>

closed:轮廓是否是闭合的。

多边形逼近


CV_EXPORTS_W void approxPolyDP( InputArray curve,
                                OutputArray approxCurve,
                                double epsilon, bool closed );

curve:某一个轮廓,数据类型vector<Point>

approxCurve:输出多边形的点集,数据类型vector<Point>

epsilon:设置精度,越小则精度越高,多边形越趋近于曲线,拟合效果更好但效率低。

closed:轮廓是否是闭合的。

凸包


CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
                              bool clockwise = false, bool returnPoints = true );

points:输入点集

hull:输出凸包。数据类型取决于returnPoints,vector<Point>或vector<int>

clockwise:拟合凸包的直线的转动方向,TRUE为顺时针,否则为逆时针。

returnPoints:若为true,则在hull中存储点的坐标。若为false,则在hull中存储点的索引,索引值根据参数points得到。默认为true

外接矩形

最小外接矩形(返回RotatedRect)


CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );

points:输入点集

最大外界矩形(返回Rect)


CV_EXPORTS_W Rect boundingRect( InputArray array );

points:输入点集

由于换了markdown编辑器,后续内容请点击链接

后续不在此处更新了

 

 

GitHub 加速计划 / opencv31 / opencv
162
15
下载
OpenCV: 开源计算机视觉库
最近提交(Master分支:4 个月前 )
796adf5d Avoid adding value to nullptr 18 小时前
1a6ef7e0 Fixed Android build with Vulkan support. 21 小时前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐