欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

一项目简介

  
一、项目背景

随着计算机视觉和人工智能技术的快速发展,摄像头测距技术已成为许多领域的重要工具,如自动驾驶、机器人导航、虚拟现实等。传统的摄像头测距方法多基于单目视觉,但这种方法通常需要已知目标物体的大小或形状,以及摄像头的内参等复杂参数。而深度摄像头则能够直接获取图像中每个像素点的深度信息,从而简化了测距过程。本项目旨在利用Python编程语言结合OpenCV库,实现基于深度摄像头的测距功能。

二、技术原理

深度摄像头工作原理:
深度摄像头通过发射红外光并接收反射回来的光线,利用飞行时间(Time of Flight, TOF)或结构光(Structured Light)等方法,测量出每个像素点对应的深度信息。
这些深度信息通常以灰度图像的形式输出,灰度值越高表示距离越近,反之则越远。
测距原理:
利用深度摄像头输出的深度图像,可以直接获取目标物体上各点的深度值。
假设已知摄像头的内参(如焦距、像元大小等),以及目标物体上某点的像素坐标和深度值,就可以通过几何关系计算出该点到摄像头的距离。
三、系统实现

环境搭建:
安装Python编程环境。
安装OpenCV库及其依赖项。
连接深度摄像头并配置相关驱动程序。
深度图像获取:
使用OpenCV的VideoCapture类捕获深度摄像头输出的视频流。
从视频流中提取深度图像帧。
测距算法实现:
读取深度图像,并将其转换为合适的格式以便处理。
选择目标物体上的特征点(如质心、边界点等),并获取其像素坐标和深度值。
根据摄像头的内参和几何关系,计算特征点到摄像头的距离。
结果输出与可视化:
将测距结果以文本或数值的形式输出。
可以选择将测距结果叠加在原始图像上,实现测距结果的可视化。
四、项目特点与优势

实时性:基于OpenCV的高效性能,能够实时处理深度摄像头输出的视频流,实现快速测距。
准确性:深度摄像头直接提供深度信息,无需复杂的参数设置和计算过程,提高了测距的准确性。
易用性:Python语言易于学习和使用,OpenCV库提供了丰富的计算机视觉功能,使得项目实现过程相对简单。
扩展性:项目采用模块化设计,方便后续添加新的功能和优化现有功能。同时,可以与其他智能系统模块进行集成,形成完整的解决方案。

二、功能

  基于Python+OpenCV深度摄像头测距

三、系统

在这里插入图片描述

四. 总结

  
自动驾驶:在自动驾驶系统中,可以利用深度摄像头测距技术实现障碍物检测、车辆定位等功能。
机器人导航:在机器人导航系统中,深度摄像头测距技术可以帮助机器人感知周围环境,实现自主导航和避障。
虚拟现实:在虚拟现实系统中,深度摄像头测距技术可以为用户提供更加真实、沉浸式的体验。例如,在虚拟游戏中,可以通过深度摄像头测距技术实现更加真实的物体交互和距离感知。

GitHub 加速计划 / opencv31 / opencv
142
15
下载
OpenCV: 开源计算机视觉库
最近提交(Master分支:3 个月前 )
d9a139f9 Animated WebP Support #25608 related issues #24855 #22569 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake 1 天前
09030615 V4l default image size #25500 Added ability to set default image width and height for V4L capture. This is required for cameras that does not support 640x480 resolution because otherwise V4L capture cannot be opened and failed with "Pixel format of incoming image is unsupported by OpenCV" and then with "can't open camera by index" message. Because of the videoio architecture it is not possible to insert actions between CvCaptureCAM_V4L::CvCaptureCAM_V4L and CvCaptureCAM_V4L::open so the only way I found is to use environment variables to preselect the resolution. Related bug report is [#25499](https://github.com/opencv/opencv/issues/25499) Maybe (but not confirmed) this is also related to [#24551](https://github.com/opencv/opencv/issues/24551) This fix was made and verified in my local environment: capture board AVMATRIX VC42, Ubuntu 20, NVidia Jetson Orin. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [X] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake 1 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐