最近想学习一下分类算法的内容,恰好opencv有SVM的函数,故先从这个下手。找了许多资料,发现要么是opencv2、3的,要么就没有具体实现代码,学习还是把代码与原理一起结合来看比较好。

其中,我主要参考的是这一篇文章:

学习SVM(一) SVM模型训练与分类的OpenCV实现icon-default.png?t=M4ADhttps://blog.csdn.net/chaipp0607/article/details/68067098写得非常好!但是是2017年发布的文章,其中许多内容都做了更新,我用的是opencv 4.5.1版本,win10系统,vs2019作开发工具。具体opencv配置不说了,我对上面那篇文章的代码进行了更新。

步骤一样.

一、数据准备

首先找到opencv库自带的digits图片,我的电脑上路径在:D:\app\opencv4.5.1\opencv\opencv\sources\samples\data\digits.png

然后在D盘建立如下文件夹:

只需新建命名就好了,不用往里面放东西。接下来建立vs2019项目工程,新建源文件

复制如下代码:

#include <windows.h>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <thread>
#include <time.h>
//#include <stdio.h>
#include <string.h>


using namespace std;
using namespace cv;

int main()
{
	char ad[128] = { 0 };
	int  filename = 0, filenum = 0;
	Mat img = imread("digits.png");
	Mat gray;
	cvtColor(img, gray, COLOR_BGR2GRAY);
	int b = 20;
	int m = gray.rows / b;   //原图为1000*2000
	int n = gray.cols / b;   //裁剪为5000个20*20的小图块

	for (int i = 0; i < m; i++)
	{
		int offsetRow = i * b;  //行上的偏移量
		if (i % 5 == 0 && i != 0)
		{
			filename++;
			filenum = 0;
		}
		for (int j = 0; j < n; j++)
		{
			int offsetCol = j * b; //列上的偏移量
			sprintf_s(ad, "D:\\data\\%d\\%d.jpg", filename, filenum++);
			//截取20*20的小块
			Mat tmp;
			gray(Range(offsetRow, offsetRow + b), Range(offsetCol, offsetCol + b)).copyTo(tmp);
			imwrite(ad, tmp);
		}
	}
	return 0;


}

 运行结束后,在刚刚新建的文件夹中,0、1文件夹内各有500张分割好的图片。

最后在test_image、train_image分别新建0、1文件夹。

把data\0中的0-399复制到data\test_image\0,399-499复制到data\train_image\0;

把data\1中的0-399复制到data\test_image\1,399-499复制到data\train_image\1。第一步完成。

--D:
  --data
    --0
    --1
    --train_image
      --0(400张)
      --1(400张)
    --test_image
      --0(100张)
      --1(100张)

 二、模型训练

 再新建一个源文件:SVM模型训练.cpp,将第一步的SVM数据准备文件从项目中移除。

复制上如下代码,其中最主要的就是opencv4中的SVM函数改变很大,配置参数上与原文完全不同

#include <stdio.h>  
#include <time.h>  
#include <opencv2/opencv.hpp>  

#include <iostream> 
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/ml/ml.hpp>  
#include <io.h>

using namespace std;
using namespace cv;
using namespace cv::ml;

void getFiles(string path, vector<string>& files);
void get_1(Mat& trainingImages, vector<int>& trainingLabels);
void get_0(Mat& trainingImages, vector<int>& trainingLabels);

int main()
{
	//获取训练数据
	Mat classes;
	Mat trainingData;
	Mat trainingImages;
	vector<int> trainingLabels;
	get_1(trainingImages, trainingLabels);
	//waitKey(2000);
	get_0(trainingImages, trainingLabels);
	Mat(trainingImages).copyTo(trainingData);
	trainingData.convertTo(trainingData, CV_32FC1);
	Mat(trainingLabels).copyTo(classes);
	//配置SVM训练器参数
	Ptr<SVM> svm = SVM::create();
	svm->setType(SVM::C_SVC);
	svm->setKernel(SVM::LINEAR);
	svm->setDegree(0);
	svm->setGamma(1);
	svm->setCoef0(0);
	svm->setC(1);
	svm->setNu(0);
	svm->setP(0);
	svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 1000, 0.01));
	//训练
	svm->train(trainingData, ROW_SAMPLE, classes );
	//保存模型
	svm->save("svm.xml");
	
	cout << "训练好了!!!" << endl;

	getchar();
	return 0;
}
void getFiles(string path, vector<string>& files)
{
	long long  hFile = 0;
	struct _finddata_t fileinfo;
	string p;
	if ((hFile = _findfirst(p.assign(path).append("\\*").c_str(), &fileinfo)) != -1)
	{
		do
		{
			if ((fileinfo.attrib & _A_SUBDIR))
			{
				if (strcmp(fileinfo.name, ".") != 0 && strcmp(fileinfo.name, "..") != 0)
					getFiles(p.assign(path).append("\\").append(fileinfo.name), files);
			}
			else
			{
				files.push_back(p.assign(path).append("\\").append(fileinfo.name));
			}
		} while (_findnext(hFile, &fileinfo) == 0);

		_findclose(hFile);
	}
}

void get_1(Mat& trainingImages, vector<int>& trainingLabels)
{
	string filePath = "D:\\data\\train_image\\1";
	cout << "获取D:\\data\\1" << endl;
	vector<string> files;
	getFiles(filePath, files);
	int number = files.size();
	for (int i = 0; i < number; i++)
	{
		Mat  SrcImage = imread(files[i].c_str());
		SrcImage = SrcImage.reshape(1, 1);
		trainingImages.push_back(SrcImage);
		trainingLabels.push_back(1);
	}
}
void get_0(Mat& trainingImages, vector<int>& trainingLabels)
{
	string filePath = "D:\\data\\train_image\\0";
	cout << "获取D:\\data\\0" << endl;
	vector<string> files;
	getFiles(filePath, files);
	int number = files.size();
	for (int i = 0; i < number; i++)
	{
		Mat  SrcImage = imread(files[i].c_str());
		SrcImage = SrcImage.reshape(1, 1);
		trainingImages.push_back(SrcImage);
		
		trainingLabels.push_back(0);
	}
}

 训练完毕后,在这个解决方案文件夹下就生成了一个.xml文件,即是我们训练出来的模型。

训练时还可以选择自动训练,会自己寻找最优参数,效果也很好。

//训练
	svm->trainAuto(trainingData, ROW_SAMPLE, classes );

三、加载模型实现分类

同样的,新建一个源文件:

复制如下代码:

#include <stdio.h>  
#include <time.h>  
#include <opencv2/opencv.hpp>  

#include <iostream> 
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/ml/ml.hpp>  
#include <io.h>

using namespace std;
using namespace cv;
using namespace cv::ml;

void getFiles(string path, vector<string>& files);
int main()
{
	int result = 0;
	string filePath = "D:\\data\\test_image\\1";
	vector<string> files;
	getFiles(filePath, files);
	int number = files.size();
	cout << number << endl;
	string modelpath = "svm.xml";
	cv::Ptr<cv::ml::SVM> svm;
	svm = cv::Algorithm::load<cv::ml::SVM>(modelpath);


	/*CvSVM svm;
	svm.clear();
	string modelpath = "svm.xml";
	FileStorage svm_fs(modelpath, FileStorage::READ);
	if (svm_fs.isOpened())
	{
		svm.load(modelpath.c_str());
	}*/
	for (int i = 0; i < number; i++)
	{
		Mat inMat = imread(files[i].c_str());
		Mat p = inMat.reshape(1, 1);
		p.convertTo(p, CV_32FC1);
		int response = (int)svm->predict(p);
		if (response == 1)//要预测1,如果用0来做测试集就改成response == 0
		{
			result++;
		}
		else
		{
			cout << files[i] << endl;
		}
	}
	cout << result << endl;
	getchar();
	return  0;
}
void getFiles(string path, vector<string>& files)
{
	long long   hFile = 0;
	struct _finddata_t fileinfo;
	string p;
	if ((hFile = _findfirst(p.assign(path).append("\\*").c_str(), &fileinfo)) != -1)
	{
		do
		{
			if ((fileinfo.attrib & _A_SUBDIR))
			{
				if (strcmp(fileinfo.name, ".") != 0 && strcmp(fileinfo.name, "..") != 0)
					getFiles(p.assign(path).append("\\").append(fileinfo.name), files);
			}
			else
			{
				files.push_back(p.assign(path).append("\\").append(fileinfo.name));
			}
		} while (_findnext(hFile, &fileinfo) == 0);
		_findclose(hFile);
	}
}

 如果想要检测0的分类准确率就让第46行的response == 0。

 可以看到,100张1有99张被识别出来,有一张452没有识别成功。100张0都识别出来了。

GitHub 加速计划 / opencv31 / opencv
77.38 K
55.71 K
下载
OpenCV: 开源计算机视觉库
最近提交(Master分支:2 个月前 )
c3747a68 Added Universal Windows Package build to CI. 12 天前
9b635da5 - 12 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐