1. 步骤

1.1 导入OpenCV库:

在您的C++代码中,首先需要导入OpenCV库。您可以使用以下语句导入核心模块:

#include <opencv2/core/core.hpp>

1.2 加载图像

使用OpenCV的 imread 函数加载要搜索的图像和目标图像。例如,假设您要搜索的图像是"search_image.jpg",目标图像是"target_image.jpg",您可以使用以下代码加载它们:
cpp

cv::Mat searchImage = cv::imread("search_image.jpg");
cv::Mat targetImage = cv::imread("target_image.jpg");

1.3 提取特征

使用OpenCV的特征提取方法(如SIFT、SURF或ORB)从目标图像中提取特征。例如,使用SIFT算法可以提取特征,您可以使用以下代码:

cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
cv::Mat targetDescriptors;
std::vector<cv::KeyPoint> targetKeypoints;
sift->detectAndCompute(targetImage, cv::noArray(), targetKeypoints, targetDescriptors);

1.4 匹配特征

使用提取的特征在搜索图像中寻找匹配。您可以使用OpenCV的特征匹配方法(如FLANN或Brute-Force)进行匹配。以下是一个使用Brute-Force匹配器的示例:

cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create(cv::DescriptorMatcher::BRUTEFORCE);
std::vector<cv::DMatch> matches;
matcher->match(searchDescriptors, targetDescriptors, matches);

1.5 显示结果

根据匹配结果,您可以选择在搜索图像上绘制匹配的关键点或边界框。以下是一个简单的示例,用于在搜索图像上绘制匹配的关键点:

cv::Mat outputImage;
cv::drawMatches(searchImage, searchKeypoints, targetImage, targetKeypoints, matches, outputImage);
cv::imshow("Matches", outputImage);
cv::waitKey(0);

2. 完整代码

#include <opencv2/core/core.hpp>

int search_pic_by_pic()
{
	// 加载查询图像和目标图像
	cv::Mat queryImage = cv::imread("E:\\code\\Yolov5_Tensorrt_Win10-master\\pictures\\search_pic_by_pic\\1.png");
	cv::Mat targetImage = cv::imread("E:\\code\\Yolov5_Tensorrt_Win10-master\\pictures\\search_pic_by_pic\\2.png");

	// 特征提取
	cv::Ptr<cv::Feature2D> featureExtractor = cv::SIFT::create();
	cv::Mat queryDescriptors, targetDescriptors;
	std::vector<cv::KeyPoint> queryKeypoints, targetKeypoints;
	featureExtractor->detectAndCompute(queryImage, cv::noArray(), queryKeypoints, queryDescriptors);
	featureExtractor->detectAndCompute(targetImage, cv::noArray(), targetKeypoints, targetDescriptors);

	// 特征匹配
	cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create(cv::DescriptorMatcher::FLANNBASED);
	std::vector<cv::DMatch> matches;
	matcher->match(queryDescriptors, targetDescriptors, matches);

	// 根据匹配结果进行排序
	std::sort(matches.begin(), matches.end(), [](const cv::DMatch& a, const cv::DMatch& b) {
		return a.distance < b.distance;
		});

	float threshold = 200.0;
	int numMatches = 0;
	int matches_size = matches.size();
	vector< cv::DMatch>::iterator it = matches.begin();
	for (it; it != matches.end();) {
		if (it->distance < threshold) {
			numMatches++;
			it++;
		}
		else {
			it = matches.erase(it);
		}
	}

	float matchRate = static_cast<float>(numMatches) / matches_size * 100.0;
	std::cout << "Match Rate: " << matchRate << "%" << std::endl;

	// 显示匹配结果
	cv::Mat matchedImage;
	cv::drawMatches(queryImage, queryKeypoints, targetImage, targetKeypoints, matches, matchedImage);
	cv::imshow("Matched Image", matchedImage);
	cv::waitKey(0);

	return 0;
}

int main()
{
	search_pic_by_pic();
	return 0;
}

3. 测试图片及效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

GitHub 加速计划 / opencv31 / opencv
77.38 K
55.71 K
下载
OpenCV: 开源计算机视觉库
最近提交(Master分支:2 个月前 )
c3747a68 Added Universal Windows Package build to CI. 7 天前
9b635da5 - 7 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐