InferOnxx.h

#include
#include
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <onnxruntime_cxx_api.h>

using namespace std;
using namespace cv;
using namespace Ort;

struct Net_config
{
float confThreshold; // Confidence threshold
float nmsThreshold; // Non-maximum suppression threshold
float objThreshold; // Object Confidence threshold
string modelpath; // model path
bool gpu = false; // using gpu
};

typedef struct BoxInfo
{
float x1;
float y1;
float x2;
float y2;
float score;
int label;
} BoxInfo;

int endsWith(string s, string sub);

const float anchors_640[3][6] = { {10.0, 13.0, 16.0, 30.0, 33.0, 23.0},
{30.0, 61.0, 62.0, 45.0, 59.0, 119.0},
{116.0, 90.0, 156.0, 198.0, 373.0, 326.0} };

const float anchors_1280[4][6] = { {19, 27, 44, 40, 38, 94},{96, 68, 86, 152, 180, 137},{140, 301, 303, 264, 238, 542},
{436, 615, 739, 380, 925, 792} };

class YOLO
{
public:
YOLO(Net_config config);
void detect(Mat& frame);
private:
float* anchors;
int num_stride;
int inpWidth;
int inpHeight;
int nout;
int num_proposal;
vector class_names;
int num_class;
int seg_num_class;
float confThreshold;
float nmsThreshold;
float objThreshold;
const bool keep_ratio = true;
vector input_image_;
void normalize_(Mat img);
void nms(vector& input_boxes);
Mat resize_image(Mat srcimg, int* newh, int* neww, int* top, int* left);

Env env = Env(ORT_LOGGING_LEVEL_ERROR, "yolov5s");
Ort::Session* ort_session = nullptr;
SessionOptions sessionOptions = SessionOptions();
vector<const char* > input_names;
vector<const char* > output_names;
vector<vector<int64_t>> input_node_dims; // >=1 outputs
vector<vector<int64_t>> output_node_dims; // >=1 outputs
std::vector<AllocatedStringPtr> In_AllocatedStringPtr;
std::vector<AllocatedStringPtr> Out_AllocatedStringPtr;

};

InferOnxx.cpp

#include “inferOnxx.h”

int endsWith(string s, string sub) {
return s.rfind(sub) == (s.length() - sub.length()) ? 1 : 0;
}

YOLO::YOLO(Net_config config)
{
this->confThreshold = config.confThreshold;
this->nmsThreshold = config.nmsThreshold;
this->objThreshold = config.objThreshold;

string classesFile = "class.names";
string model_path = config.modelpath;
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());

if (config.gpu) {  
    //OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);   //CUDA加速开启   
}

sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC); //设置图优化类型

ort_session = new Session(env, widestr.c_str(), sessionOptions);    // 创建会话,把模型加载到内存中

size_t numInputNodes = ort_session->GetInputCount();            //输入输出节点数量    
size_t numOutputNodes = ort_session->GetOutputCount();

for (int i = 0; i < numInputNodes; i++)                         // onnxruntime1.12版本后不能按照从前格式写
{
    AllocatorWithDefaultOptions allocator;                              // 配置输入输出节点内存
    In_AllocatedStringPtr.push_back(ort_session->GetInputNameAllocated(i, allocator));
    input_names.push_back(In_AllocatedStringPtr.at(i).get());           // 内存
    Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);   // 类型
    auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
    auto input_dims = input_tensor_info.GetShape();                     // 输入shape
    input_node_dims.push_back(input_dims);                              // 输入维度信息
}
for (int i = 0; i < numOutputNodes; i++)
{
    AllocatorWithDefaultOptions allocator;
    Out_AllocatedStringPtr.push_back(ort_session->GetOutputNameAllocated(i, allocator));
    output_names.push_back(Out_AllocatedStringPtr.at(i).get());

    Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
    auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
    auto output_dims = output_tensor_info.GetShape();
    output_node_dims.push_back(output_dims);
}
this->inpHeight = input_node_dims[0][2];
this->inpWidth = input_node_dims[0][3];
this->nout = output_node_dims[0][2];                // 5+classese 85
this->num_proposal = output_node_dims[0][1];        // 3*(小检测框+中检测框+大检测框) 3*((20*20)+(40*40)+(80*80))

ifstream ifs(classesFile.c_str());
string line;
while (getline(ifs, line)) this->class_names.push_back(line);
this->num_class = class_names.size();

if (endsWith(config.modelpath, "6.onnx"))           // 判断版本
{
    anchors = (float*)anchors_1280;
    this->num_stride = 4;
}
else
{
    anchors = (float*)anchors_640;
    this->num_stride = 3;
}

}

Mat YOLO::resize_image(Mat srcimg, int* newh, int* neww, int* top, int* left)
{
int srch = srcimg.rows, srcw = srcimg.cols;
*newh = this->inpHeight;
*neww = this->inpWidth;
Mat dstimg;
if (this->keep_ratio && srch != srcw) {
float hw_scale = (float)srch / srcw;
if (hw_scale > 1) { // srch>srcw
*newh = this->inpHeight;
*neww = int(this->inpWidth / hw_scale); // set/scale
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA); // resize(nw,nh)
*left = int((this->inpWidth - *neww) * 0.5); // 计算padding距离
copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 114); // padding
}
else {
*newh = (int)this->inpHeight * hw_scale;
*neww = this->inpWidth;
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*top = (int)(this->inpHeight - *newh) * 0.5;
copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 114);
}
}
else {
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
}
return dstimg;
}

void YOLO::normalize_(Mat img)
{
// img.convertTo(img, CV_32F);
int row = img.rows;
int col = img.cols;
this->input_image_.resize(row * col * img.channels());
for (int c = 0; c < 3; c++)
{
for (int i = 0; i < row; i++)
{
for (int j = 0; j < col; j++)
{
float pix = img.ptr(i)[j * 3 + 2 - c]; // HWC to CHW, BGR to RGB,j * 3 + 2 - c即完成转换
this->input_image_[c * row * col + i * col + j] = pix / 255.0;
}
}
}
}

void YOLO::nms(vector& input_boxes)
{
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; }); // 按照置信度排序, []Lambda 表达式
vector vArea(input_boxes.size()); // 记录每个检测框面积
for (int i = 0; i < int(input_boxes.size()); ++i) // 遍历所有检测框
{
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
}

vector<bool> isSuppressed(input_boxes.size(), false);               // 记录是否抑制,默认为FALSE
for (int i = 0; i < int(input_boxes.size()); ++i)                   // 遍历所有检测框
{
    if (isSuppressed[i]) { continue; }                              // 是否已经判断过
    for (int j = i + 1; j < int(input_boxes.size()); ++j)           // 第二个指针遍历
    {
        if (isSuppressed[j]) { continue; }
        float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
        float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
        float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
        float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);

        float w = (max)(float(0), xx2 - xx1 + 1);
        float h = (max)(float(0), yy2 - yy1 + 1);
        float inter = w * h;
        float ovr = inter / (vArea[i] + vArea[j] - inter);          // 计算miou

        if (ovr >= this->nmsThreshold)
        {
            isSuppressed[j] = true;                                 // 大于设定的阈值,则抑制
        }
    }
}
// return post_nms;
int idx_t = 0; 
// remove_if()函数 remove_if(beg, end, op) //移除区间[beg,end)中每一个“令判断式:op(elem)获得true”的元素
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());

}

void YOLO::detect(Mat& frame)
{
int newh = 0, neww = 0, padh = 0, padw = 0; // padh:上下边的padding距离; padw:左右padding的距离
Mat dstimg = this->resize_image(frame, &newh, &neww, &padh, &padw);
this->normalize_(dstimg);
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };

auto memory_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
Value input_tensor_ = Value::CreateTensor<float>(memory_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());


vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size());
vector<BoxInfo> generate_boxes;
const float* pdata = ort_outputs[0].GetTensorMutableData<float>();                  // 数组,存放预测数据 [bs,anchor'classes,anchor'number,pos+conf+ num'classes]
float ratioh = (float)frame.rows / newh, ratiow = (float)frame.cols / neww;         // 计算缩放倍数
for (int i = 0; i < num_proposal; ++i)      // 遍历所有的num_pre_boxes 3*((20*20)+(40*40)+(80*80))
{
    int index = i * nout;                   // 索引
    float obj_conf = pdata[index + 4];      // 第四个为置信度分数
    if (obj_conf > this->objThreshold)      // 大于阈值
    {
        // 求最大分数和索引
        int class_idx = 0;                  // 记录类别id
        float max_class_socre = 0;          // 记录最大概率
        for (int k = 0; k < this->num_class; ++k)   // K个类别里循环  index+4是置信度分数,+5开始是类别的分数
        {
            if (pdata[k + index + 5] > max_class_socre) // 判断分数
            {
                max_class_socre = pdata[k + index + 5]; // 记录分数
                class_idx = k;                          // 记录类别数
            }
        }
        max_class_socre *= obj_conf;   // 最大的类别分数*置信度
        if (max_class_socre > this->confThreshold) // 再次筛选
        {
            float cx = pdata[index];        //x:检测框中心点
            float cy = pdata[index + 1];    //y
            float w = pdata[index + 2];     //w:检测框宽
            float h = pdata[index + 3];     //h
            // 映射到原来的图像上
            float xmin = (cx - padw - 0.5 * w) * ratiow;      // (推理位置-左边padding距离-0.5*宽)*缩放倍数=原图像左上角x位置
            float ymin = (cy - padh - 0.5 * h) * ratioh;      // (推理位置-上边padding距离-0.5*高)*缩放倍数=原图像左上角y位置
            float xmax = (cx - padw + 0.5 * w) * ratiow;      // 
            float ymax = (cy - padh + 0.5 * h) * ratioh;      // 

            generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, class_idx }); //记录相关数据
        }
    }
}

// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
nms(generate_boxes);
for (size_t i = 0; i < generate_boxes.size(); ++i)
{
    int xmin = int(generate_boxes[i].x1);
    int ymin = int(generate_boxes[i].y1);
    rectangle(frame, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
    string label = format("%.2f", generate_boxes[i].score);
    label = this->class_names[generate_boxes[i].label] + ":" + label;
    putText(frame, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}

}

main.cpp

#include
#include
#include
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
//#include <cuda_provider_factory.h>
//#include <onnxruntime_cxx_api.h>
#include “inferOnxx.h”

using namespace std;
using namespace cv;

int main()
{
cv::VideoCapture cap;
cap.open(0);
if (!cap.isOpened()) {
return 0;
}

while (true)
{
	//cv::Mat srcimg;
	//cap >> srcimg;
	//if (srcimg.empty()) {
	//	std::cout << "over \n";
	//	break;
	//}
	Net_config yolo_nets = { 0.3, 0.5, 0.3,"last.onnx" };
	YOLO yolo_model(yolo_nets);
	string imgpath = "1.jpg";
	Mat srcimg = imread(imgpath);
	yolo_model.detect(srcimg);

	static const string kWinName = "Deep learning object detection in ONNXRuntime";
	namedWindow(kWinName, WINDOW_FULLSCREEN);//WINDOW_NORMAL
	imshow(kWinName, srcimg);
	waitKey(1);
}
destroyAllWindows();

}

GitHub 加速计划 / yo / yolov5
575
37
下载
yolov5 - Ultralytics YOLOv8的前身,是一个用于目标检测、图像分割和图像分类任务的先进模型。
最近提交(Master分支:1 个月前 )
6981c274 Refactor code for speed and clarity Co-authored-by: UltralyticsAssistant <web@ultralytics.com> 15 天前
f003c3df This commit resolves an issue where the save-csv command did not write the CSV header. The code now correctly saves the header in the CSV file. Signed-off-by: Ali Ghanbari <alighanbari446@gmail.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> 20 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐