在图像处理中,均值滤波、高斯滤波和中值滤波是三种常用的降噪方法。它们的实现原理各有不同:

1. 均值滤波 (Mean Filtering)

实现原理
均值滤波是通过计算滤波窗口内所有像素值的平均值来平滑图像。它是一种线性滤波器,能有效地减少噪声,但也会模糊图像的边缘。

步骤

  1. 选择一个大小为 ( k \times k ) 的窗口(滤波器核)。
  2. 将窗口在图像上滑动,每次计算窗口内所有像素的均值。
  3. 用该均值替换窗口中心的像素值。

公式
对于每个像素 ((i, j)),新的像素值 (I’(i, j)) 计算如下:

I ′ ( i , j ) = 1 k 2 ∑ m = − k 2 k 2 ∑ n = − k 2 k 2 I ( i + m , j + n ) I'(i, j) = \frac{1}{k^2} \sum_{m=-\frac{k}{2}}^{\frac{k}{2}} \sum_{n=-\frac{k}{2}}^{\frac{k}{2}} I(i+m, j+n) I(i,j)=k21m=2k2kn=2k2kI(i+m,j+n)

2. 高斯滤波 (Gaussian Filtering)

实现原理
高斯滤波使用高斯函数的权重来计算滤波窗口内像素的加权平均值。相比均值滤波,它能更好地保留边缘信息。高斯滤波器是一种线性滤波器,权重的分布是中心对称的高斯分布。

步骤

  1. 选择一个大小为 ( k \times k ) 的高斯窗口(滤波器核),并计算其权重。
  2. 将窗口在图像上滑动,每次计算窗口内像素的加权平均值。
  3. 用该加权平均值替换窗口中心的像素值。

公式
高斯函数的权重 ( G(x, y) ) 计算如下:

G ( x , y ) = 1 2 π σ 2 exp ⁡ ( − x 2 + y 2 2 σ 2 ) G(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) G(x,y)=2πσ21exp(2σ2x2+y2)
对于每个像素 ((i, j)),新的像素值 (I’(i, j)) 计算如下:
I ′ ( i , j ) = ∑ m = − k 2 k 2 ∑ n = − k 2 k 2 G ( m , n ) ⋅ I ( i + m , j + n ) I'(i, j) = \sum_{m=-\frac{k}{2}}^{\frac{k}{2}} \sum_{n=-\frac{k}{2}}^{\frac{k}{2}} G(m, n) \cdot I(i+m, j+n) I(i,j)=m=2k2kn=2k2kG(m,n)I(i+m,j+n)

3. 中值滤波 (Median Filtering)

实现原理
中值滤波是通过选择滤波窗口内所有像素值的中值来平滑图像。它是一种非线性滤波器,特别适用于去除椒盐噪声,并且能很好地保留图像边缘。

步骤

  1. 选择一个大小为 ( k \times k ) 的窗口。
  2. 将窗口在图像上滑动,每次提取窗口内所有像素值。
  3. 将提取的像素值排序,选择中间值作为新的像素值。

公式
对于每个像素 ((i, j)),新的像素值 (I’(i, j)) 计算如下:

I ′ ( i , j ) = median { I ( i + m , j + n ) ∣ m , n ∈ [ − k 2 , k 2 ] } I'(i, j) = \text{median} \{ I(i+m, j+n) | m, n \in [-\frac{k}{2}, \frac{k}{2}] \} I(i,j)=median{I(i+m,j+n)m,n[2k,2k]}

4.代码实现示例

下面是使用OpenCV实现上述三种滤波方法的代码示例:

import cv2
import numpy as np
import matplotlib.pyplot as plt

def apply_mean_filter(image):
    return cv2.blur(image, (5, 5))

def apply_gaussian_filter(image):
    return cv2.GaussianBlur(image, (5, 5), 1.0)

def apply_median_filter(image):
    return cv2.medianBlur(image, 5)

def display_images(original, mean_filtered, gaussian_filtered, median_filtered):
    titles = ['Original Image', 'Mean Filtered Image', 'Gaussian Filtered Image', 'Median Filtered Image']
    images = [original, mean_filtered, gaussian_filtered, median_filtered]

    for i in range(4):
        plt.subplot(2, 2, i+1), plt.imshow(cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB))
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])

    plt.show()

def main():
    image_path = 'path_to_your_image.jpg'  # 请替换为你的图像路径
    image = cv2.imread(image_path)

    if image is None:
        print(f"Error: Unable to load image at {image_path}")
        return

    mean_filtered = apply_mean_filter(image)
    gaussian_filtered = apply_gaussian_filter(image)
    median_filtered = apply_median_filter(image)

    display_images(image, mean_filtered, gaussian_filtered, median_filtered)

if __name__ == "__main__":
    main()
  1. 均值滤波:使用 cv2.blur(image, (5, 5)) 实现。
  2. 高斯滤波:使用 cv2.GaussianBlur(image, (5, 5), 1.0) 实现,其中 1.0 是标准差。
  3. 中值滤波:使用 cv2.medianBlur(image, 5) 实现。

5.效果展示

在本次实验中,明显中值滤波的效果更优
在这里插入图片描述

GitHub 加速计划 / opencv31 / opencv
166
15
下载
OpenCV: 开源计算机视觉库
最近提交(Master分支:4 个月前 )
1d701d16 Don't overflow pointer addition 2 天前
e76924ef In both cases we add negative value (as unsigned type), so pointer addition wraps, which is undefined behavior. 2 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐