很多时候我们只管使用数据,而不知道数据之间的差异在那里,所以我们可以选择相同的点然后加载不同的数据集,然后查看某个点的时序影像来实现影像差异对比。

Landsat 8是由美国地质调查局(USGS)运行的陆地观测卫星,于2013年发射。它具有高分辨率的传感器(OLI和TIRS),可捕捉可见光、红外线和热红外线波段的数据,为地球科学家、资源管理人员和环境监测人员提供了有价值的信息。 Landsat 8影像可以用于许多应用,如土地利用/土地覆盖分类、森林管理、水资源管理、城市规划、矿产资源勘探等等。另外,Landsat 8数据也被广泛应用于自然灾害监测和应急响应。

Sentinel-2是欧洲空间局(ESA)推出的地球观测卫星,主要用于环境监测、地表覆盖变化检测、农业、森林和城市规划等领域。Sentinel-2具有高分辨率、广泛的覆盖范围、高频率的重访时间和多光谱能力,能够获取多种光谱波段的高分辨率影像数据,包括可见光、近红外和短波红外等。这些影像数据对于区分地表覆盖类型(如植被、水体、土地利用等)和监测环境变化非常有用。Sentinel-2影像数据可以通过ESA的数据门户或地球观测数据共享平台(GEE)等渠道获取。

MODIS是美国国家航空航天局(NASA)和美国地球观测系统(EOS)的一部分,是一种遥感技术,旨在捕捉地球表面和大气层的图像。MODIS影像可以用于监测和分析地表覆盖、气候变化、环境污染、自然灾害等多个领域的数据,因此在环境科学、气象学、农业、林业、水资源管理、城市规划等领域得到了广泛应用。MODIS影像的分辨率从250m至1km不等,可以提供全球99%覆盖率和每日多次观察,满足了许多科学家、政策制定者和其他研究人员对数据的需求。

函数:

ui.Chart.image.seriesByRegion(imageCollection, regions, reducer, bandscalexPropertyseriesProperty)

Generates a Chart from an image collection. Extracts and plots the value of the specified band in each region for each image in the collection. Usually a time series.

  • X-axis = Image labeled by xProperty (default: 'system:time_start').

  • Y-axis = Reducer output.

  • Series = Region labeled by seriesProperty (default: 'system:index').

Returns a chart.

Arguments:

imageCollection (ImageCollection):

An ImageCollection with data to be included in the chart.

regions (Feature|FeatureCollection|Geometry|List<Feature>|List<Geometry>):

The regions to reduce.

reducer (Reducer):

Reducer that generates the value for the y-axis. Must return a single value.

band (Number|String, optional):

The band name to reduce using the reducer. Defaults to the first band.

scale (Number, optional):

Scale to use with the reducer in meters.

xProperty (String, optional):

Property to be used as the label for each image on the x-axis. Defaults to 'system:time_start'.

seriesProperty (String, optional):

Property of features in opt_regions to be used for series labels. Defaults to 'system:index'.

Returns: ui.Chart

 

代码:


var  AOI = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[-103.60307723271508, 44.88240786607988],
          [-103.60307723271508, 44.88233802278273],
          [-103.60242947923798, 44.88233802278273],
          [-103.60242947923798, 44.88240786607988]]], null, false),
    Point_1 = /* color: #98ff00 */ee.Geometry.Point([-103.60279560076852, 44.88238125911955]);

var AOI = AOI, Point_1 = Point_1;

//Sentinel 2 Image ------------------------------------------------------------

var startDateS2 = ee.Date.fromYMD(2016,1,1);

var endDateS2 = ee.Date.fromYMD(2016,8,29);

 

 

var collectionS2 = ee.ImageCollection("COPERNICUS/S2").filterDate(startDateS2,endDateS2).filterBounds(AOI).filterMetadata('CLOUDY_PIXEL_PERCENTAGE', 'less_than', 0.1);

 

 

var S2 = collectionS2.median().clip(AOI)

Map.addLayer(S2, {min:0, max: 3000, bands:"B4,B3,B2"}, 'S2');

Map.centerObject(AOI);

 

var s2_ndvi = S2.normalizedDifference(['B8', 'B4']).rename('NDVI')

 

var ndviParams = {min: -0.2, max: 0.8, palette: ['red', 'yellow', 'green']};

Map.addLayer(s2_ndvi, ndviParams, 'NDVI');

 

//

 

 

 

 

//TimeSeries ---------------------------------------------

 

var startDate = ee.Date.fromYMD(2018,1,1);

var endDate = ee.Date.fromYMD(2019,12,31);

 

var months = ee.List.sequence(1,12)

var years = ee.List.sequence(2018, 2019);

 

//Sentinel 2 < 15% clouds -----------------------------------------

 

var S2_nocloud = ee.ImageCollection("COPERNICUS/S2").filterDate(startDate,endDate)

                                            .filterBounds(AOI)

                                            .filterMetadata('CLOUDY_PIXEL_PERCENTAGE', 'less_than', 15)

                                     

                                           

var S2_NDVI_nocloud = S2_nocloud.map(function(image){

  return image.normalizedDifference(['B8', 'B4']).rename('NDVI').copyProperties(image, ['system:time_start']);

})

 

 

 

//Chart

 

var titleS2_nocloud = {

  title: 'S2 NDVI < 15% cloud',

  hAxis: {title: 'Time'},

  vAxis: {title: 'NDVI'},

};

 

 

var S2_chart_nocloud = ui.Chart.image.seriesByRegion({

  imageCollection: S2_NDVI_nocloud,

  regions: Point_1,

  reducer: ee.Reducer.mean(),

  band: 'NDVI',

  scale: 20,

  seriesProperty: 'NDVI'

}).setOptions(titleS2_nocloud)

 

print(S2_chart_nocloud);

 

// Sentinel 2 Monthly ------------------------------------------------------------

 

function maskS2clouds(image) {

  var qa = image.select('QA60');

 

  // Bits 10 and 11 are clouds and cirrus, respectively.

  var cloudBitMask = 1 << 10;

  var cirrusBitMask = 1 << 11;

 

  // Both flags should be set to zero, indicating clear conditions.

  var mask = qa.bitwiseAnd(cloudBitMask).eq(0)

      .and(qa.bitwiseAnd(cirrusBitMask).eq(0));

 

  return image.updateMask(mask).divide(10000).copyProperties(image, ['system:time_start']);

}

 

var S2 = ee.ImageCollection("COPERNICUS/S2").filterDate(startDate,endDate)

                                            .filterBounds(AOI)

                                            .map(maskS2clouds);

 

 

 

var Monthly_S2 =  ee.ImageCollection.fromImages(

  years.map(function (y) {

    return months.map(function(m) {

       

      var filtered = S2.filter(ee.Filter.calendarRange(y, y, 'year'))

                    .filter(ee.Filter.calendarRange(m, m, 'month'))

      filtered = filtered.median()

      var NDVI = filtered.expression(

        '((NIR - RED) / (NIR + RED))', {

        'NIR': filtered.select('B8'),

        'RED': filtered.select('B4')

        }).rename('NDVI'); 

     

      return NDVI.set('year', y).set('month', m).set('system:time_start', ee.Date.fromYMD(y, m, 1));                 

    });

  }).flatten()

);

 

//Chart

 

var titleS2_M = {

  title: 'Mean Monthly S2 NDVI',

  hAxis: {title: 'Time'},

  vAxis: {title: 'NDVI'},

};

 

 

var S2_chart_M = ui.Chart.image.seriesByRegion({

  imageCollection: Monthly_S2,

  regions: Point_1,

  reducer: ee.Reducer.mean(),

  band: 'NDVI',

  scale: 20,

  seriesProperty: 'NDVI'

}).setOptions(titleS2_M)

 

print(S2_chart_M);

 

 

//MODIS NDVI --------------------------------------------------------------------------

 

var MD_NDVI = ee.ImageCollection('MODIS/MOD09GA_006_NDVI')

    .filterDate(startDate,endDate)

    .filterBounds(AOI)

    .select('NDVI');

 

 

 var Monthly_MD =  ee.ImageCollection.fromImages(

  years.map(function (y) {

    return months.map(function(m) {

       

      var filtered = MD_NDVI.filter(ee.Filter.calendarRange(y, y, 'year'))

                    .filter(ee.Filter.calendarRange(m, m, 'month'))

      filtered = filtered.median()

      return filtered.set('year', y).set('month', m).set('system:time_start', ee.Date.fromYMD(y, m, 1));                 

    });

  }).flatten()

);

 

//Chart

 

var titleMD = {

  title: 'Mean Monthly MODIS NDVI',

  hAxis: {title: 'Time'},

  vAxis: {title: 'NDVI'},

};

 

 

var MD_chart = ui.Chart.image.seriesByRegion({

  imageCollection: Monthly_MD,

  regions: Point_1,

  reducer: ee.Reducer.mean(),

  band: 'NDVI',

  scale: 60,

  seriesProperty: 'NDVI'

}).setOptions(titleMD)

 

print(MD_chart);

 

 

//Landsat 8 ------------------------------------------------------------

 

var L8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').filterDate(startDate,endDate)

                                                     .filterBounds(AOI)

                                                    

                                                    

 

var L8_NDVI = L8.map(function(image){

  return image.normalizedDifference(['B5', 'B4']).rename('NDVI').copyProperties(image, ['system:time_start']);

})

//chart

 

var titleL8 = {

  title: 'L8 NDVI',

  hAxis: {title: 'Time'},

  vAxis: {title: 'NDVI'},

};

 


var L8_chart = ui.Chart.image.seriesByRegion({

  imageCollection: L8_NDVI,

  regions: Point_1,

  reducer: ee.Reducer.mean(),

  band: 'NDVI',

  scale: 30,

  seriesProperty: 'NDVI'

}).setOptions(titleL8)

 

print(L8_chart);

 

 

// export to CSV

 

var export_csv = function(img){

  var mon = img.get('month')

  var yea = img.get('year')

  var value = img.reduceRegion(ee.Reducer.mean(), Point_1, 500).get('NDVI')

  var ft = ee.Feature(null, {'year': yea,

                             'month': mon,

                             'value': value});

  return ft;

};

 

// Apply the function to each image in modisLST.

var MD_csv = Monthly_MD.map(export_csv);

 

Export.image.toDrive({

  image: s2_ndvi,

  description: 'Afework_Bibugne',

  scale: 10

});

Export.table.toDrive({collection: MD_csv, selectors: 'year, month, value',folder:"Time_Series", fileFormat:"CSV"});

GitHub 加速计划 / sentine / Sentinel
22.24 K
7.98 K
下载
alibaba/Sentinel: Sentinel 是阿里巴巴开源的一款面向分布式服务架构的流量控制、熔断降级组件,提供实时监控、限流、降级和系统保护功能,适用于微服务治理场景。
最近提交(Master分支:2 个月前 )
195150bc * fix issue 2485 which occur oom when using async servlet request. * optimize imports * 1. fix the same issue in the webmvc-v6x 2. improve based on review comments 2 个月前
b78b09d3 2 个月前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐