YOLOv7学习
yolov7
YOLOv7 - 实现了一种新的实时目标检测算法,用于图像识别和处理。
项目地址:https://gitcode.com/gh_mirrors/yo/yolov7
免费下载资源
·
一、网络结构
二、主要策略
当前目标检测主要的优化方向:更快更强的网络架构;更有效的特征集成方法;更准确的检测方法;更精确的损失函数;更有效的标签分配方法;更有效的训练方法。
1、损失函数
整体和YOLOV5 保持一致,分为坐标损失、目标置信度损失(GT就是训练阶段的普通iou)和分类损失三部分。其中目标置信度损失和分类损失采用BCEWithLogitsLoss(带log的二值交叉熵损失),坐标损失采用CIoU损失。
2、匹配策略
主要是参考了YOLOV5 和YOLOV6使用的当下比较火的simOTA。
GitHub 加速计划 / yo / yolov7
13.13 K
4.14 K
下载
YOLOv7 - 实现了一种新的实时目标检测算法,用于图像识别和处理。
最近提交(Master分支:3 个月前 )
a207844b - 1 年前
2c612d33 - 1 年前
更多推荐
已为社区贡献2条内容
所有评论(0)