【学习总结】Python transformers AutoTokenizer encode 出现的 101 和 102_tokenizer 101
transformers
huggingface/transformers: 是一个基于 Python 的自然语言处理库,它使用了 PostgreSQL 数据库存储数据。适合用于自然语言处理任务的开发和实现,特别是对于需要使用 Python 和 PostgreSQL 数据库的场景。特点是自然语言处理库、Python、PostgreSQL 数据库。
项目地址:https://gitcode.com/gh_mirrors/tra/transformers
免费下载资源
·
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
from transformers import AutoTokenizer, AutoModel
model_name = "bert-base-chinese"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
print(len(tokenizer.vocab.keys()))
sequence = "法国的首都是巴黎"
print(tokenizer.vocab["法"])
tokens = tokenizer.tokenize(sequence)
print(tokens)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
print(token_ids)
token_ids_s2e = tokenizer.encode(sequence)
print(token_ids_s2e)
输出结果:
21128
3791
['法', '国', '的', '首', '都', '是', '巴', '黎']
[3791, 1744, 4638, 7674, 6963, 3221, 2349, 7944]
[101, 3791, 1744, 4638, 7674, 6963, 3221, 2349, 7944, 102]
token_ids_s2e 中多了 101 和 102
sequence1 = tokenizer.decode(token_ids)
print(sequence1)
sequence2 = tokenizer.decode(token_ids_s2e)
print(sequence2)
输出结果:
法 国 的 首 都 是 巴 黎
[CLS] 法 国 的 首 都 是 巴 黎 [SEP]
101 代表 CLS,是文本的开头
102 代表 SEP,是文本的分隔符
2. 编解码多段文本
sequence_batch = ["法国的首都是巴黎","美国的首都是华盛顿特区" ]
token_ids_batch = tokenizer.encode(sequence_batch)
print(token_ids_batch)
sequence_batch = tokenizer.decode(token_ids_batch)
print(sequence_batch)
输出结果:
[101, 3791, 1744, 4638, 7674, 6963, 3221, 2349, 7944, 102, 5401, 1744, 4638, 7674, 6963, 3221, 1290, 4670, 7561, 4294, 1277, 102]
[CLS] 法 国 的 首 都 是 巴 黎 [SEP] 美 国 的 首 都 是 华 盛 顿 特 区 [SEP]
3. 实际操作
embedding_batch = tokenizer("法国的首都是巴黎","美国的首都是华盛顿特区")
print(embedding_batch)
输出:
{'input\_ids': [101, 3791, 1744, 4638, 7674, 6963, 3221, 2349, 7944, 102, 5401, 1744, 4638, 7674, 6963, 3221, 1290, 4670, 7561, 4294, 1277, 102], 'token\_type\_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'attention\_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
优化代码
现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
![](https://img-blog.csdnimg.cn/img_convert/21b2604bd33c4b6713f686ddd3fe5aff.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)**
![img](https://img-blog.csdnimg.cn/img_convert/b055c9820b29d7dcf60e1b9c99ca8630.png)
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
)**
[外链图片转存中...(img-cPcFldSo-1713433886936)]
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
GitHub 加速计划 / tra / transformers
130.24 K
25.88 K
下载
huggingface/transformers: 是一个基于 Python 的自然语言处理库,它使用了 PostgreSQL 数据库存储数据。适合用于自然语言处理任务的开发和实现,特别是对于需要使用 Python 和 PostgreSQL 数据库的场景。特点是自然语言处理库、Python、PostgreSQL 数据库。
最近提交(Master分支:2 个月前 )
33868a05
* [i18n-HI] Translated accelerate page to Hindi
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
---------
Co-authored-by: Kay <kay@Kays-MacBook-Pro.local>
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com> 4 天前
e2ac16b2
* rework converter
* Update modular_model_converter.py
* Update modular_model_converter.py
* Update modular_model_converter.py
* Update modular_model_converter.py
* cleaning
* cleaning
* finalize imports
* imports
* Update modular_model_converter.py
* Better renaming to avoid visiting same file multiple times
* start converting files
* style
* address most comments
* style
* remove unused stuff in get_needed_imports
* style
* move class dependency functions outside class
* Move main functions outside class
* style
* Update modular_model_converter.py
* rename func
* add augmented dependencies
* Update modular_model_converter.py
* Add types_to_file_type + tweak annotation handling
* Allow assignment dependency mapping + fix regex
* style + update modular examples
* fix modular_roberta example (wrong redefinition of __init__)
* slightly correct order in which dependencies will appear
* style
* review comments
* Performance + better handling of dependencies when they are imported
* style
* Add advanced new classes capabilities
* style
* add forgotten check
* Update modeling_llava_next_video.py
* Add prority list ordering in check_conversion as well
* Update check_modular_conversion.py
* Update configuration_gemma.py 5 天前
更多推荐
已为社区贡献1条内容
所有评论(0)