【AI大模型】Transformers大模型库(一):Tokenizer
一、引言
这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
本文重点介绍Tokenizer类。
二、Tokenizer
2.1 概述
Tokenizer在自然语言处理(NLP)中是一个关键组件,它负责将文本字符串转换成模型可以处理的结构化数据形式,通常是将文本切分成“tokens”或单词、短语、子词等单位。这些tokens是模型理解文本的基础。Tokenizer的类型和复杂性可以根据任务需求而变化,从简单的基于空格的分割到更复杂的基于规则或机器学习的分词方法。
2.2 主要功能
- 分词:将句子拆分成单词或子词。例如,中文分词器会将“自然语言处理”拆分成“自然”、“语言”、“处理”,而英文Tokenizer可能使用Subword Tokenization如Byte-Pair Encoding (BPE)来处理罕见词。 2. 添加特殊标记:在序列的开始和结束添加特殊标记,如BERT中的[CLS]和[SEP],用于特定任务的序列分类或区分输入片段。 3. 编码:将tokens转换为数字ID,这些ID是模型的输入。每个token在词汇表中有一个唯一的ID。 4. 处理填充和截断:为了确保输入序列的一致长度,Tokenizer可以对较短的序列进行填充,对较长的序列进行截断。 5. 生成Attention Mask:在某些模型中,Tokenizer还会生成一个Attention Mask,指示哪些输入位置是实际的tokens(通常标记为1),哪些是填充的(标记为0)。
2.3 代码示例
使用示例(以Hugging Face的Transformers库为例):
代码语言:javascript
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
print("------------单句分词------------")
token = tokenizer.encode("我在北京的,互联网公司工作")
print(token) #[101, 2769, 1762, 1266, 776, 4638, 117, 757, 5468, 5381, 1062, 1385, 2339, 868, 102]
print(tokenizer.decode(token)) #[CLS] 我 在 北 京 的, 互 联 网 公 司 工 作 [SEP]
print("------------多句分词------------")
batch_token1 = tokenizer(["我在,北京工作","想去外地看一看世界多么美好"],padding=True,return_tensors="pt")
print(batch_token1)
"""
{'input_ids': tensor([[ 101, 2769, 1762, 117, 1266, 776, 2339, 868, 102, 0, 0, 0,
0, 0, 0],
[ 101, 2682, 1343, 1912, 1765, 4692, 671, 4692, 686, 4518, 1914, 720,
5401, 1962, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
"""
print(batch_token1["input_ids"])
"""提取input_ids
tensor([[ 101, 2769, 1762, 117, 1266, 776, 2339, 868, 102, 0, 0, 0,
0, 0, 0],
[ 101, 2682, 1343, 1912, 1765, 4692, 671, 4692, 686, 4518, 1914, 720,
5401, 1962, 102]])
"""
这个例子展示了如何使用BertTokenizer来处理文本,生成包括token input_ids、token_type_ids和attention mask在内的编码数据,这些数据可以直接用于BERT模型的输入。
三、总结
本文对使用transformers的BertTokenizer进行尝试,主要功能是将字、词转换为可以运算的数字ID编码,供后面的model层使用。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
更多推荐
所有评论(0)