transformers DataCollatorForLanguageModeling类
transformers
huggingface/transformers: 是一个基于 Python 的自然语言处理库,它使用了 PostgreSQL 数据库存储数据。适合用于自然语言处理任务的开发和实现,特别是对于需要使用 Python 和 PostgreSQL 数据库的场景。特点是自然语言处理库、Python、PostgreSQL 数据库。
项目地址:https://gitcode.com/gh_mirrors/tra/transformers
免费下载资源
·
构造方法
DataCollatorForLanguageModeling(
tokenizer: PreTrainedTokenizerBase,
mlm: bool = True,
mlm_probability: float = 0.15,
pad_to_multiple_of: Optional[int] = None,
return_tensors: str = "pt")
在构建语言模型或者说是进行MLM任务时需要使用的数据收集器,该数据收集器会以一定概率(由参数mlm_probability控制)将序列中的Token替换成Mask标签。不同于DataCollatorWithPadding、DataCollatorForTokenClassification和DataCollatorForTokenClassification,该数据收集器只会将序列填充到最长序列长度。
参数tokenzier表示用于编码数据的分词器。
参数mlm表示是否使用MLM模型,也就是会随机的Mask掉序列中的一部分Token。该参数设置为True时,也就是使用MLM模型时,会将输入数据的labels中没有被mask掉的token的值设置为-100,被mask掉的token的值设置为原来的值。
参数mlm_probability表示随机替换Token的概率。值越大,被替换的Token的数量也就越多。默认为0.15,这也就是BERT模型中预训练MLM任务中使用的概率值。
参数pad_to_multiple_of表示填充的序列的倍数。
参数return_tensors表示返回数据的类型,有三个可选项,分别是"tf"、“pt”、“np”,分别表示tensorflow可以处理的数据类型,pytorch可以处理的数据类型以及numpy数据类型。
使用示例
def preprocess_fn(data):
data = {k: sum(data[k], []) for k in data.keys()}
length = len(data["input_ids"]) // 128 * 128
result = {k: [v[i: i + 128] for i in range(0, length, 128)] for k, v in data.items()}
result["labels"] = result["input_ids"].copy()
return result
dataset = datasets.load_dataset("wikitext", "wikitext-2-raw-v1")
tokenizer = transformers.AutoTokenizer.from_pretrained("distilroberta-base")
data_collator = transformers.DataCollatorForLanguageModeling(tokenizer=tokenizer,
mlm=True,
mlm_probability=0.15,
return_tensors="tf")
dataset = dataset.map(lambda data: tokenizer(data["text"], truncation=True),
batched=True,
batch_size=1000,
remove_columns=["text"])
dataset = dataset.map(preprocess_fn,
batched=True,
batch_size=1000)
train_dataset = dataset["train"].to_tf_dataset(columns=["input_ids", "attention_mask", "labels"],
batch_size=16,
shuffle=True,
collate_fn=data_collator)
GitHub 加速计划 / tra / transformers
130.24 K
25.88 K
下载
huggingface/transformers: 是一个基于 Python 的自然语言处理库,它使用了 PostgreSQL 数据库存储数据。适合用于自然语言处理任务的开发和实现,特别是对于需要使用 Python 和 PostgreSQL 数据库的场景。特点是自然语言处理库、Python、PostgreSQL 数据库。
最近提交(Master分支:2 个月前 )
33868a05
* [i18n-HI] Translated accelerate page to Hindi
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
* Update docs/source/hi/accelerate.md
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com>
---------
Co-authored-by: Kay <kay@Kays-MacBook-Pro.local>
Co-authored-by: K.B.Dharun Krishna <kbdharunkrishna@gmail.com> 13 天前
e2ac16b2
* rework converter
* Update modular_model_converter.py
* Update modular_model_converter.py
* Update modular_model_converter.py
* Update modular_model_converter.py
* cleaning
* cleaning
* finalize imports
* imports
* Update modular_model_converter.py
* Better renaming to avoid visiting same file multiple times
* start converting files
* style
* address most comments
* style
* remove unused stuff in get_needed_imports
* style
* move class dependency functions outside class
* Move main functions outside class
* style
* Update modular_model_converter.py
* rename func
* add augmented dependencies
* Update modular_model_converter.py
* Add types_to_file_type + tweak annotation handling
* Allow assignment dependency mapping + fix regex
* style + update modular examples
* fix modular_roberta example (wrong redefinition of __init__)
* slightly correct order in which dependencies will appear
* style
* review comments
* Performance + better handling of dependencies when they are imported
* style
* Add advanced new classes capabilities
* style
* add forgotten check
* Update modeling_llava_next_video.py
* Add prority list ordering in check_conversion as well
* Update check_modular_conversion.py
* Update configuration_gemma.py 13 天前
更多推荐
已为社区贡献7条内容
所有评论(0)