构造方法
DataCollatorForSeq2Seq(
	tokenizer: PreTrainedTokenizerBase,
    model: Optional[Any] = None,
    padding: Union[bool, str, PaddingStrategy] = True,
    max_length: Optional[int] = None,
    pad_to_multiple_of: Optional[int] = None,
    label_pad_token_id: int = -100,
    return_tensors: str = "pt")

在进行序列生成任务时(QA、文本概括等)使用的数据收集器,需要模型的输出是一个序列。该数据收集器不仅会动态的填充数据的数据,而且也会填充数据对应的标签。

参数tokenizer表示用于编码数据的分词器。

参数model表示训练的模型,通过设置的模型,从而产生一项数据decoder_input_ids,该数据用于模型decoder层数据的输入。

参数padding表示填充方式,可以为布尔类型、字符串类型或者一个PaddingStrategy对象。当值为布尔类型时,True表示填充至最大序列长度,False表示不填充。当为字符串类型时,"longest"表示填充值最大序列长度,"max_length"表示填充值参数max_length设置的长度,"do_not_pad"表示不填充。

参数max_length表示填充序列的最大长度,当设置padding="max_length"时,该参数才会有用。

参数pad_to_multiple_of表示填充的序列的倍数。

参数label_pad_token_id表示填充标签时的值,默认为-100。注意,默认数据中序列填充的值为0,这与标签填充的值不一致。

参数return_tensors表示返回数据的类型,有三个可选项,分别是"tf"、“pt”、“np”,分别表示tensorflow可以处理的数据类型,pytorch可以处理的数据类型以及numpy数据类型。

使用示例
def preprocess_fn(data):
    inputs = ["summarize: " + d for d in data["document"]]
    results = tokenizer(inputs,
                        padding="max_length",
                        truncation=True,
                        max_length=1024)
    labels = tokenizer(data["summary"],
                       padding="max_length",
                       truncation=True,
                       max_length=128)
    results["labels"] = labels["input_ids"]
    return results


dataset = datasets.load_dataset("xsum")
tokenizer = transformers.AutoTokenizer.from_pretrained("t5-small")
model = transformers.TFAutoModelForSeq2SeqLM.from_pretrained("t5-small")
data_collator = transformers.DataCollatorForSeq2Seq(tokenizer=tokenizer,
                                                    model=model,
                                                    return_tensors="tf")
dataset = dataset.map(preprocess_fn,
                      batched=True,
                      batch_size=1000)
train_dataset = dataset["train"].to_tf_dataset(columns=["input_ids", "attention_mask", "labels"],
                                               batch_size=8,
                                               shuffle=True,
                                               collate_fn=data_collator)
GitHub 加速计划 / tra / transformers
62
5
下载
huggingface/transformers: 是一个基于 Python 的自然语言处理库,它使用了 PostgreSQL 数据库存储数据。适合用于自然语言处理任务的开发和实现,特别是对于需要使用 Python 和 PostgreSQL 数据库的场景。特点是自然语言处理库、Python、PostgreSQL 数据库。
最近提交(Master分支:4 个月前 )
6e0515e9 * added changes from 32905 * fixed mistakes caused by select all paste * rename diff_dinov2... * ran tests * Fix modular * Fix tests * Use new init * Simplify drop path * Convert all checkpoints * Add figure and summary * Update paths * Update docs * Update docs * Update toctree * Update docs --------- Co-authored-by: BernardZach <bernardzach00@gmail.com> Co-authored-by: Zach Bernard <132859071+BernardZach@users.noreply.github.com> 3 天前
d8c1db2f Signed-off-by: jiqing-feng <jiqing.feng@intel.com> 3 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐