标注工具Labelimg的安装与使用
labelImg
🎉 超级实用!LabelImg,图像标注神器,现在加入Label Studio社区,享受多模态数据标注新体验!🚀 简单易用,支持XML、YOLO和CreateML格式,适用于ImageNet等项目。不再单独维护,立即尝试Label Studio,安装一键到位,更灵活,功能更强大!👇 安装即刻开始:pip3 install labelImg,或访问<https://github.com/heartexlabs/label-studio> 获取源码构建。一起探索数据标注的新边界!👨💻👩💻【此简介由AI生成】
项目地址:https://gitcode.com/gh_mirrors/la/labelImg
·
标注工具Labelimg的安装与使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
提示:以下是本篇文章正文内容,下面案例可供参考
一、labelimg 是什么?
labelimg 是一个可视化的图像标定工具。它是用Python编写的,并将Qt用于其图形界面。批注以PASCAL VOC格式(ImageNet使用的格式)另存为XML文件。此外,它还支持YOLO格式。Faster R-CNN,YOLO,SSD等目标检测网络所需要的数据集,均需要借此工具标定图像中的目标。
二、安装labelimg
1.环境安装配置
配置完成后点击anaconda3-anaconda prompt进入命令行

2.安装labelimg
在命令行窗口中依次输入下列代码,安装labelimg依赖的第三方库。
pip install PyQt5
pip install pyqt5-tools
pip install lxml
pip install labelimg
安装labelimg,安装成功截图如下
至此,环境配置步骤已经全部完成。在第三方库安装完成后,在命令行中输入labelimg指令以启动labelimg(注:环境配置完成后再次启动只需要打开anaconda prompt命令行并输入labelimg即可启动,无需再次安装第三方库)。
进入labelimg标注工具的初始化界面如下图所示。
总结
剩下具体操作和快捷键参考
知乎
🎉 超级实用!LabelImg,图像标注神器,现在加入Label Studio社区,享受多模态数据标注新体验!🚀 简单易用,支持XML、YOLO和CreateML格式,适用于ImageNet等项目。不再单独维护,立即尝试Label Studio,安装一键到位,更灵活,功能更强大!👇 安装即刻开始:pip3 install labelImg,或访问<https://github.com/heartexlabs/label-studio> 获取源码构建。一起探索数据标注的新边界!👨💻👩💻【此简介由AI生成】
最近提交(Master分支:3 个月前 )
b33f965b
Adds information about Label Studio community to welcome LabelImg users 3 年前
2d5537ba
3 年前
AtomGit 是由开放原子开源基金会联合 CSDN 等生态伙伴共同推出的新一代开源与人工智能协作平台。平台坚持“开放、中立、公益”的理念,把代码托管、模型共享、数据集托管、智能体开发体验和算力服务整合在一起,为开发者提供从开发、训练到部署的一站式体验。
更多推荐



所有评论(0)