VSCode配置之OnnxRuntime(CPU) && YOLOv7验证
onnxruntime
microsoft/onnxruntime: 是一个用于运行各种机器学习模型的开源库。适合对机器学习和深度学习有兴趣的人,特别是在开发和部署机器学习模型时需要处理各种不同框架和算子的人。特点是支持多种机器学习框架和算子,包括 TensorFlow、PyTorch、Caffe 等,具有高性能和广泛的兼容性。
项目地址:https://gitcode.com/gh_mirrors/on/onnxruntime
免费下载资源
·
- 背景
最近在尝试将Pytorch模型部署为Cmodel并讨论推理框架的速度优势,作为VSCode配置之LibTorch(GPU)极简配置 & VS2022 LibTorch(GPU)验证的姊妹篇,本篇将基于VSCode和VS2022环境进行OnnxRuntime环境的配置和验证。(注:为快速验证,这里仅配置了CPU推理,目前了解的情况是,OnnxRuntime在CPU推理上的加速比较友好,TensorRT在GPU环境加速比较友好,具体可能跟模型、实测结果有关,后续可能会进一步补充验证) - 软件环境
OnnxRuntime 1.14.1 版本(可选的)
VSCode+CMake
VS Studio 2022
参考代码:参考代码:yolov7-opencv-onnxrun-cpp-py - VSCode + OnnxRuntime CPU版本配置
1)测试代码 (整体结构参考之前的推理框架)
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
//#include <cuda_provider_factory.h>
#include <onnxruntime_cxx_api.h>
using namespace std;
using namespace cv;
using namespace Ort;
struct Net_config
{
float confThreshold; // Confidence threshold
float nmsThreshold; // Non-maximum suppression threshold
string modelpath;
};
typedef struct BoxInfo
{
float x1;
float y1;
float x2;
float y2;
float score;
int label;
} BoxInfo;
class YOLOV7
{
public:
YOLOV7(Net_config config);
void detect(Mat& frame);
private:
int inpWidth;
int inpHeight;
int nout;
int num_proposal;
vector<string> class_names;
int num_class;
float confThreshold;
float nmsThreshold;
vector<float> input_image_;
void normalize_(Mat img);
void nms(vector<BoxInfo>& input_boxes);
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "YOLOV7");
Ort::Session* ort_session = nullptr;
SessionOptions sessionOptions = SessionOptions();
vector<char*> input_names = {"images"};
vector<char*> output_names = {"output"};
vector<vector<int64_t>> input_node_dims; // >=1 outputs
vector<vector<int64_t>> output_node_dims; // >=1 outputs
};
YOLOV7::YOLOV7(Net_config config)
{
this->confThreshold = config.confThreshold;
this->nmsThreshold = config.nmsThreshold;
string classesFile = "coco.names";
string model_path = config.modelpath;
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
//sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
ort_session = new Session(env, widestr.c_str(), sessionOptions);
size_t numInputNodes = ort_session->GetInputCount();
size_t numOutputNodes = ort_session->GetOutputCount();
AllocatorWithDefaultOptions allocator;
for (int i = 0; i < numInputNodes; i++)
{
// input_names.push_back((ort_session->GetInputNameAllocated(i, allocator)).get());
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
auto input_dims = input_tensor_info.GetShape();
input_node_dims.push_back(input_dims);
}
for (int i = 0; i < numOutputNodes; i++)
{
// output_names.push_back(ort_session->GetOutputNameAllocated(i, allocator).get());
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
auto output_dims = output_tensor_info.GetShape();
output_node_dims.push_back(output_dims);
}
this->inpHeight = input_node_dims[0][2];
this->inpWidth = input_node_dims[0][3];
this->nout = output_node_dims[0][2];
this->num_proposal = output_node_dims[0][1];
ifstream ifs(classesFile.c_str());
string line;
while (getline(ifs, line)) this->class_names.push_back(line);
this->num_class = class_names.size();
}
void YOLOV7::normalize_(Mat img)
{
// img.convertTo(img, CV_32F);
int row = img.rows;
int col = img.cols;
this->input_image_.resize(row * col * img.channels());
for (int c = 0; c < 3; c++)
{
for (int i = 0; i < row; i++)
{
for (int j = 0; j < col; j++)
{
float pix = img.ptr<uchar>(i)[j * 3 + 2 - c];
this->input_image_[c * row * col + i * col + j] = pix / 255.0;
}
}
}
}
void YOLOV7::nms(vector<BoxInfo>& input_boxes)
{
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
vector<float> vArea(input_boxes.size());
for (int i = 0; i < int(input_boxes.size()); ++i)
{
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
}
vector<bool> isSuppressed(input_boxes.size(), false);
for (int i = 0; i < int(input_boxes.size()); ++i)
{
if (isSuppressed[i]) { continue; }
for (int j = i + 1; j < int(input_boxes.size()); ++j)
{
if (isSuppressed[j]) { continue; }
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
float w = (max)(float(0), xx2 - xx1 + 1);
float h = (max)(float(0), yy2 - yy1 + 1);
float inter = w * h;
float ovr = inter / (vArea[i] + vArea[j] - inter);
if (ovr >= this->nmsThreshold)
{
isSuppressed[j] = true;
}
}
}
// return post_nms;
int idx_t = 0;
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
}
void YOLOV7::detect(Mat& frame)
{
Mat dstimg;
resize(frame, dstimg, Size(this->inpWidth, this->inpHeight));
this->normalize_(dstimg);
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
// 开始推理
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); // 开始推理
/generate proposals
vector<BoxInfo> generate_boxes;
float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;
int n = 0, k = 0; ///cx,cy,w,h,box_score, class_score
const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
for (n = 0; n < this->num_proposal; n++) ///特征图尺度
{
float box_score = pdata[4];
if (box_score > this->confThreshold)
{
int max_ind = 0;
float max_class_socre = 0;
for (k = 0; k < num_class; k++)
{
if (pdata[k + 5] > max_class_socre)
{
max_class_socre = pdata[k + 5];
max_ind = k;
}
}
max_class_socre *= box_score;
if (max_class_socre > this->confThreshold)
{
float cx = pdata[0] * ratiow; ///cx
float cy = pdata[1] * ratioh; ///cy
float w = pdata[2] * ratiow; ///w
float h = pdata[3] * ratioh; ///h
float xmin = cx - 0.5 * w;
float ymin = cy - 0.5 * h;
float xmax = cx + 0.5 * w;
float ymax = cy + 0.5 * h;
generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_ind });
}
}
pdata += nout;
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
nms(generate_boxes);
for (size_t i = 0; i < generate_boxes.size(); ++i)
{
int xmin = int(generate_boxes[i].x1);
int ymin = int(generate_boxes[i].y1);
rectangle(frame, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
string label = format("%.2f", generate_boxes[i].score);
label = this->class_names[generate_boxes[i].label] + ":" + label;
putText(frame, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}
}
int main()
{
Net_config YOLOV7_nets = { 0.3, 0.5, "model/yolov7_640x640.onnx" };
YOLOV7 net(YOLOV7_nets);
string imgpath = "inference/bus.jpg";
Mat srcimg = imread(imgpath);
net.detect(srcimg);
static const string kWinName = "Deep learning object detection in ONNXRuntime";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(0);
destroyAllWindows();
}
2)CMakeLists.txt (编译方法参见另一篇博客[VSCode配置之Opencv4x终极奥义](https://blog.csdn.net/qq_37172182/article/details/121933824?spm=1001.2014.3001.5502))
# cmake needs this line
SET(CMAKE_BUILD_TYPE "Release")
# # Define project name
# PROJECT(CppTemplate)
include_directories("D:/path/to/your/opencv/build/include" "D:/path/to/your/opencv/build/include/opencv2")
include_directories("D:/path/to/your/Microsoft.ML.OnnxRuntime.1.14.1/build/native/include")
#指定dll的lib所在路径
link_directories("D:/path/to/your/opencv/build/x64/vc15/lib")
link_directories("D:/path/to/your/Microsoft.ML.OnnxRuntime.1.14.1/runtimes/win-x64/native")
include_directories(OpenCV_INCLUDE_DIRS)
set(CMAKE_PREFIX_PATH D:/libtorch_gpu/libtorch/share/cmake/Torch/)
find_package( Torch REQUIRED)
add_executable(onnxruntime_yolov7 onnxruntime_yolov7.cpp)
target_link_libraries(onnxruntime_yolov7 opencv_world460 onnxruntime)
。
3)输出结果
-
VS2022 OnnxRuntime版本配置
1)快速配置方法:项目 -> 管理NuGet程序包,即可快速安装OnnxRuntime(见下图)
【注:之所以在开头说OnnxRuntime的安装是可选的,是因为这里会自动下载一份OnnxRuntime在项目目录的package里面,VSCode通过配置CMakeFiles.txt获取相应路径即可】
2)输出结果
-
小结
可能存在的问题:
1. OpenCV4.5.x调用.onnx文件forward失败;解决方案: 1) 修改yolov7源码:model/common.py #52 return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1) def forward(self, x): return Contract(gain=2).(x) 2) 导出命令(不含nms和grid):python export.py --weights ./yolov7.pt --img-size 640 640
- 运行过程报错异常;
ort_session->GetInputName(i, allocator) ort_session->GetOutputName(i, allocator) 修改为: ort_session->GetInputNameAllocated(i, allocator)).get() ort_session->GetOutputNameAllocated(i, allocator)).get() 仍然存在内存泄漏的风险,最直接的解决方案是使用Netron查看.onnx模型的输入和输出
- 推理时间评估;
需要进一步深入了解Onnxruntime的加速设置方法、快速读取模型等流程,最终考虑将LibTorch、OpenCV、OnnxRuntime、TensorRT各种平台做综合对比。
GitHub 加速计划 / on / onnxruntime
13.76 K
2.79 K
下载
microsoft/onnxruntime: 是一个用于运行各种机器学习模型的开源库。适合对机器学习和深度学习有兴趣的人,特别是在开发和部署机器学习模型时需要处理各种不同框架和算子的人。特点是支持多种机器学习框架和算子,包括 TensorFlow、PyTorch、Caffe 等,具有高性能和广泛的兼容性。
最近提交(Master分支:2 个月前 )
59280095
Adds support for einsum via WebNN matmul, transpose, reshape, reducesum,
identity and element-wise binary ops. 20 小时前
c73a3d18
### Description
A breakdown PR of https://github.com/microsoft/onnxruntime/pull/22651
### Motivation and Context
<!-- - Why is this change required? What problem does it solve?
- If it fixes an open issue, please link to the issue here. --> 23 小时前
更多推荐
已为社区贡献1条内容
所有评论(0)