
onnxruntime C++部署floa16模型yolov5 7.0
onnxruntime
microsoft/onnxruntime: 是一个用于运行各种机器学习模型的开源库。适合对机器学习和深度学习有兴趣的人,特别是在开发和部署机器学习模型时需要处理各种不同框架和算子的人。特点是支持多种机器学习框架和算子,包括 TensorFlow、PyTorch、Caffe 等,具有高性能和广泛的兼容性。
项目地址:https://gitcode.com/gh_mirrors/on/onnxruntime
·
将float都改为Ort::Float16_t
microsoft/onnxruntime: 是一个用于运行各种机器学习模型的开源库。适合对机器学习和深度学习有兴趣的人,特别是在开发和部署机器学习模型时需要处理各种不同框架和算子的人。特点是支持多种机器学习框架和算子,包括 TensorFlow、PyTorch、Caffe 等,具有高性能和广泛的兼容性。
最近提交(Master分支:7 个月前 )
89f8206b
There is an issue with the 0.46.0 `wheel` version as reported in
https://github.com/pypa/wheel/issues/660. We are currently seeing this
on the Python packaging pipelines, for example in [this
run](https://aiinfra.visualstudio.com/Lotus/_build/results?buildId=740997&view=logs&j=4864752d-f1c3-57c0-06eb-25cee39385a7&s=3fc0883b-27ef-5aa3-1052-0a269c26624c&t=fa95d49e-17f6-501e-c36c-b2949c11fc4a&l=13). 16 小时前
cda0d14c
### Description
This PR is one of a series of changes for optimization of Dawn API
usage. See https://github.com/microsoft/onnxruntime/pull/24281
Optimize the code for workgroup dispatch in the `WebGpuContext` class.
The updated code prefers using the C-API instead of the C++ API for
WebGPU. This is because the C++ API uses class `wgpu::Buffer`, which
causes significant amount of calls to `wgpuBufferAddRef` and
`wgpuBufferRelease` to ensure the lifecycle of the buffer is managed
correctly. For this specific use case in ONNX Runtime (launch a compute
shader program), using the C-API is more efficient. 1 天前
更多推荐




所有评论(0)