PaddleOCR-infer_rec.py将图片进行排序再预测
PaddleOCR
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
项目地址:https://gitcode.com/gh_mirrors/pa/PaddleOCR
免费下载资源
·
将一个文件下的图片按照名称进行排序之后再进行预测,预测结果存入txt文档中
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import re
import os
import sys
import json
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
def main():
global_config = config['Global']
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
if config['Architecture']["algorithm"] in ["Distillation",
]: # distillation model
for key in config['Architecture']["Models"]:
config['Architecture']["Models"][key]["Head"][
'out_channels'] = char_num
else: # base rec model
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
load_model(config, model)
# create data ops
transforms = []
for op in config['Eval']['dataset']['transforms']:
op_name = list(op)[0]
if 'Label' in op_name:
continue
elif op_name in ['RecResizeImg']:
op[op_name]['infer_mode'] = True
elif op_name == 'KeepKeys':
if config['Architecture']['algorithm'] == "SRN":
op[op_name]['keep_keys'] = [
'image', 'encoder_word_pos', 'gsrm_word_pos',
'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
]
elif config['Architecture']['algorithm'] == "SAR":
op[op_name]['keep_keys'] = ['image', 'valid_ratio']
else:
op[op_name]['keep_keys'] = ['image']
transforms.append(op)
global_config['infer_mode'] = True
ops = create_operators(transforms, global_config)
save_res_path = config['Global'].get('save_res_path',
"./output/rec/predicts_rec.txt")
if not os.path.exists(os.path.dirname(save_res_path)):
os.makedirs(os.path.dirname(save_res_path))
model.eval()
with open(save_res_path, "w") as fout:
#添加列头
fout.write('new_name' + "\t" + 'value' +'\n')
# 将图片先进行排序之后再进行预测
infer_list = get_image_file_list(config['Global']['infer_img'])
infer_list.sort(key=lambda x: int(re.split('/home/aistudio/data/data62843/test_images/|.jpg',x)[1]))
# 将图片先进行排序之后再进行预测
for file in infer_list:
logger.info("infer_img: {}".format(file))
with open(file, 'rb') as f:
img = f.read()
data = {'image': img}
batch = transform(data, ops)
if config['Architecture']['algorithm'] == "SRN":
encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)
others = [
paddle.to_tensor(encoder_word_pos_list),
paddle.to_tensor(gsrm_word_pos_list),
paddle.to_tensor(gsrm_slf_attn_bias1_list),
paddle.to_tensor(gsrm_slf_attn_bias2_list)
]
if config['Architecture']['algorithm'] == "SAR":
valid_ratio = np.expand_dims(batch[-1], axis=0)
img_metas = [paddle.to_tensor(valid_ratio)]
images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images)
if config['Architecture']['algorithm'] == "SRN":
preds = model(images, others)
elif config['Architecture']['algorithm'] == "SAR":
preds = model(images, img_metas)
else:
preds = model(images)
post_result = post_process_class(preds)
info = None
if isinstance(post_result, dict):
rec_info = dict()
for key in post_result:
if len(post_result[key][0]) >= 2:
rec_info[key] = {
"label": post_result[key][0][0],
"score": float(post_result[key][0][1]),
}
info = json.dumps(rec_info)
else:
if len(post_result[0]) >= 2:
info = post_result[0][0] + "\t" + str(post_result[0][1])
if info is not None:
logger.info("\t result: {}".format(info))
# fout.write(file + "\t" + info)
# 格式化输出
fout.write(file + "\t" + post_result[0][0] +'\n')
logger.info("success!")
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
main()
GitHub 加速计划 / pa / PaddleOCR
41.53 K
7.59 K
下载
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
最近提交(Master分支:3 个月前 )
d3d7e858
11 天前
d1bc4166
12 天前
更多推荐
已为社区贡献2条内容
所有评论(0)