前言

        基于PaddleOCR银行卡识别实现(一)

        基于PaddleOCR银行卡识别实现(二)

        前两篇文章讲了检测模型和识别模型的实现,这一篇文章姗姗来迟,将讲解下两个模型的串联应用和PaddleOCR的源码精简,下面我们来看看如何实现,文章最后有全源码下载。

银行卡卡号识别源码分析

1、添加预测代码

新建deploy目录,加入预测py文件

核心代码如下:

    def predict(self, image=None, path="", **kwargs):
        if image is not None:
            predicted_data = image
        elif path != "":
            predicted_data = self.read_image(path)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        dt_boxes, rec_res, _ = self.text_sys(predicted_data)

        dt_num = len(dt_boxes)

        if dt_num > 0:
            rec_res_final = dict()
            text, score = rec_res[0]
            rec_res_final.update({
                'bank_card_number': text,
                'score': float(score),
                'location': dt_boxes[0].astype(np.int).tolist()
            })

            url = "https://ccdcapi.alipay.com/validateAndCacheCardInfo.json?cardNo=" + rec_res_final[
                "bank_card_number"] + "&cardBinCheck=true"
            r = requests.get(url=url)
            res = r.json()
            if res["validated"]:
                card_types = {
                    "DC": "借记卡",
                    "CC": "信用卡",
                    "SCC": "准贷记卡",
                    "PC": "预付费卡"
                }
                if res["cardType"] in card_types:
                    card_type = card_types[res["cardType"]]
                else:
                    card_type = "未知卡类型【" + res["cardType"] + "】"

                if res["bank"] in self.bank:
                    bank_name = self.bank[res["bank"]]
                else:
                    bank_name = "未知银行"

                rec_res_final.update({
                    "card_type": card_type,
                    "bank_name": bank_name
                })
            else:
                rec_res_final.update({
                    "card_type": "未知卡类型",
                    "bank_name": "未知银行"
                })

            return rec_res_final
        else:
            return ""
2、模型存放位置

det为检测模型,rec为识别模型

3、参数说明

目前的识别模型是在PP-OCRv2的基础上训练出来的,如何是v3或v4训练的,需要将这里的re_image_shape改成“3,48,320”

4、预测

ocr_bank.py文件中添加main方法:

if __name__ == '__main__':
    args = {
        "use_gpu": False,
        "enable_mkldnn": True
    }
    ocr_bank = OCRBank(args=args)
    print(ocr_bank.predict(None, "1.jpg"))

python .\deploy\ocr_bank.py

结果:

[2023/11/29 15:31:50] ppocr DEBUG: dt_boxes num : 1, elapsed : 0.5060036182403564
[2023/11/29 15:31:50] ppocr DEBUG: rec_res num  : 1, elapsed : 0.10000085830688477
{'bank_card_number': '622991116400066409', 'score': 0.9891971945762634, 'location': [[164, 368], [789, 374], [789, 424], [164, 417]], 'card_type': '借记卡', 'bank_name': '河南省农村信用社'}
5、命令行检测模型预测

python tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./inference/det/" --image_dir="1.jpg" --use_gpu=False --det_db_unclip_ratio=2.5

完毕

        以上就是银行卡识别的整个流程,精简后可直观的进行部署,这里只是做了第一步精简,在infer中和后处理中,还有部分代码可以进一步精简。

精简后源码下载:

基于PaddleOCR银行卡卡号识别源码

GitHub 加速计划 / pa / PaddleOCR
41.53 K
7.59 K
下载
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
最近提交(Master分支:3 个月前 )
7bbda2bc 9 天前
1d4e7a80 11 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐