YOLOv5在android端实现目标检测+跟踪+越界识别并报警
yolov5
yolov5 - Ultralytics YOLOv8的前身,是一个用于目标检测、图像分割和图像分类任务的先进模型。
项目地址:https://gitcode.com/gh_mirrors/yo/yolov5
免费下载资源
·
YOLOv5在android端实现目标检测+跟踪+越界识别并报警
想要获取源码和相关资料说明的可以关注我的微信公众号:雨中算法屋, 后台回复越界识别即可获取,有问题也可以关注公众号加我微信联系我,相互交流学习。
算法功能:
判断划定的区域内,在某个时间内,是否有⼈体闯⼊,涉及到了⼈体检测+⼈体追踪+业务功能(区域监测)多个模型串联的功能。
所需设备:
android系统的手机/平板一部,下载手机Aidlux的APP软件(打开安卓手机的应用商城,搜索Aidlux即可
下载安装)AIdlux主打的是基于ARM架构的跨生态(Android/鸿蒙+Linux)一站式AIOT应用开发平台。
具体实现功能
以越界识别为例,主要是设置⼀个感兴趣区域。⽐如在⼀个湖⾯上,设置⼀个感兴趣区域。当晚上深夜时间,在感兴趣ROI区域内识别到⼈体的时候,就要重点关注,是否有跳⽔的⻛险或者异常情况。
实现人流数量统计功能视频:
越界识别
当有一个人通过视频中的那条蓝色警戒线,左上角person_count数量就会增1,最后人数统计完后,会通过喵提醒功能,将统计人数发送到手机微信端:
总体的业务流程可以细分为如下几个步骤:
(1)⼈流统计越界线段绘制
for t in online_targets:
# 目标的检测框信息
tlwh = t.tlwh
# 目标的track_id信息
tid = t.track_id
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
# 针对目标绘制追踪相关信息
res_img = plot_tracking(res_img, online_tlwhs, online_ids, 0,0)
##绘制统计人流线
lines = [[186,249],[1200,366]]
cv2.line(res_img,(186,249),(1200,366),(255,0,0),2)
(2)⼈体检测统计点调整
# 2.计算得到人体下方中心点的位置(人体检测监测点调整)
pt = [tlwh[0]+1/2*tlwh[2],tlwh[1]+tlwh[3]]
(3)⼈体和线段的位置状态判断
def is_passing_line(point, polyline):
# 在直线下方,status =-1
# 在直线上方,status =1
status = 1
# 点映射在直线的高度
poly_y = ((polyline[1][1] - polyline[0][1]) * (point[0] - polyline[0][0])) / (polyline[1][0] - polyline[0][0]) + \
polyline[0][1]
if point[1] > poly_y:
status = -1
return status
# 3. 人体和违规区域的判断(人体状态追踪判断)
track_info = is_passing_line(pt, lines)
if tid not in track_id_status.keys():
track_id_status.update( {tid:[track_info]})
else:
if track_info != track_id_status[tid][-1]:
track_id_status[tid].append(track_info)
(4)⼈流统计分析判断
# 4. 判断是否有track_id越界,有的话保存成图片
# 当某个track_id的状态,上一帧是-1,但是这一帧是1时,说明越界了
if track_id_status[tid][-1] == 1 and len(track_id_status[tid]) >1:
# 判断上一个状态是否是-1,是否的话说明越界,为了防止继续判别,随机的赋了一个3的值
if track_id_status[tid][-2] == -1:
track_id_status[tid].append(3)
# cv2.imwrite("overstep.jpg",res_img)
count_person +=1
cv2.putText(res_img,"-1 to 1 person_count:"+ str(count_person),(50,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,255),2)
cvs.imshow(res_img)
(5)喵提醒发送
if frame is None:
####相机采集结束
print("camera is over!")
# 统计打印人流数量
# 填写对应的喵码
id = '######'
# 填写喵提醒中,发送的消息,这里放上前面提到的图片外链
text = "人流统计数:"+str(count_person)
ts = str(time.time()) # 时间戳
type = 'json' # 返回内容格式
request_url = "http://miaotixing.com/trigger?"
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36 Edg/87.0.664.47'}
result = requests.post(request_url + "id=" + id + "&text=" + text + "&ts=" + ts + "&type=" + type,headers=headers)
break
总体代码实现:
yolov5_overstep.py
# aidlux相关
from cvs import *
import aidlite_gpu
# from utils import detect_postprocess, preprocess_img, draw_detect_res, scale_coords, process_points, isInsidePolygon, is_in_poly
from utils import detect_postprocess, preprocess_img, draw_detect_res, is_passing_line
import cv2
# bytetrack
from track.tracker.byte_tracker import BYTETracker
from track.utils.visualize import plot_tracking
import requests
import time
# 加载模型
model_path = '/home/lesson4_codes/aidlux/yolov5n_best-fp16.tflite'
in_shape = [1 * 640 * 640 * 3 * 4]
out_shape = [1 * 25200 * 6 * 4]
# 载入模型
aidlite = aidlite_gpu.aidlite()
# 载入yolov5检测模型
aidlite.ANNModel(model_path, in_shape, out_shape, 4, 0)
tracker = BYTETracker(frame_rate=30)
track_id_status = {}
cap = cvs.VideoCapture("/home/lesson4_codes/aidlux/video.mp4")
frame_id = 0
count_person = 0
while True:
frame = cap.read()
if frame is None:
####相机采集结束
print("camera is over!")
# 统计打印人流数量
# 填写对应的喵码
id = '######' ####此处改为自己的喵码
# 填写喵提醒中,发送的消息,这里放上前面提到的图片外链
text = "人流统计数:"+str(count_person)
ts = str(time.time()) # 时间戳
type = 'json' # 返回内容格式
request_url = "http://miaotixing.com/trigger?"
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36 Edg/87.0.664.47'}
result = requests.post(request_url + "id=" + id + "&text=" + text + "&ts=" + ts + "&type=" + type,headers=headers)
break
# 预处理
img = preprocess_img(frame, target_shape=(640, 640), div_num=255, means=None, stds=None)
# 数据转换:因为setTensor_Fp32()需要的是float32类型的数据,所以送入的input的数据需为float32,大多数的开发者都会忘记将图像的数据类型转换为float32
aidlite.setInput_Float32(img, 640, 640)
# 模型推理API
aidlite.invoke()
# 读取返回的结果
pred = aidlite.getOutput_Float32(0)
# 数据维度转换
pred = pred.reshape(1, 25200, 6)[0]
# 模型推理后处理
pred = detect_postprocess(pred, frame.shape, [640, 640, 3], conf_thres=0.4, iou_thres=0.45)
# 绘制推理结果
res_img = draw_detect_res(frame, pred)
# 目标追踪相关功能
det = []
# Process predictions
for box in pred[0]: # per image
box[2] += box[0]
box[3] += box[1]
det.append(box)
if len(det):
# Rescale boxes from img_size to im0 size
online_targets = tracker.update(det, [frame.shape[0], frame.shape[1]])
online_tlwhs = []
online_ids = []
online_scores = []
# 取出每个目标的追踪信息
for t in online_targets:
# 目标的检测框信息
tlwh = t.tlwh
# 目标的track_id信息
tid = t.track_id
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
# 针对目标绘制追踪相关信息
res_img = plot_tracking(res_img, online_tlwhs, online_ids, 0,0)
### 越界识别功能实现 ###
# 1.绘制越界监测区域
##绘制统计人流线
lines = [[186,249],[1200,366]]
cv2.line(res_img,(186,249),(1200,366),(255,0,0),2)
# 2.计算得到人体下方中心点的位置(人体检测监测点调整)
pt = [tlwh[0]+1/2*tlwh[2],tlwh[1]+tlwh[3]]
# 3. 人体和违规区域的判断(人体状态追踪判断)
# track_info = is_in_poly(pt, points)
track_info = is_passing_line(pt, lines)
if tid not in track_id_status.keys():
track_id_status.update( {tid:[track_info]})
else:
if track_info != track_id_status[tid][-1]:
track_id_status[tid].append(track_info)
# 4. 判断是否有track_id越界,有的话保存成图片
# 当某个track_id的状态,上一帧是-1,但是这一帧是1时,说明越界了
if track_id_status[tid][-1] == 1 and len(track_id_status[tid]) >1:
# 判断上一个状态是否是-1,是否的话说明越界,为了防止继续判别,随机的赋了一个3的值
if track_id_status[tid][-2] == -1:
track_id_status[tid].append(3)
# cv2.imwrite("overstep.jpg",res_img)
count_person +=1
cv2.putText(res_img,"-1 to 1 person_count:"+ str(count_person),(50,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,255),2)
cvs.imshow(res_img)
GitHub 加速计划 / yo / yolov5
575
37
下载
yolov5 - Ultralytics YOLOv8的前身,是一个用于目标检测、图像分割和图像分类任务的先进模型。
最近提交(Master分支:1 个月前 )
6981c274
Refactor code for speed and clarity
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> 15 天前
f003c3df
This commit resolves an issue where the save-csv command did not write the CSV header. The code now correctly saves the header in the CSV file.
Signed-off-by: Ali Ghanbari <alighanbari446@gmail.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> 20 天前
更多推荐
已为社区贡献3条内容
所有评论(0)