YOLOv10训练自己的数据集(AutoDL算力云)
yolov10
YOLOv10: Real-Time End-to-End Object Detection
项目地址:https://gitcode.com/gh_mirrors/yo/yolov10
免费下载资源
·
一、在GitHub上下载YOLOv10代码
二、将自己的数据集放在YOLOv10中
1、创建dataset目录
将数据集放在dataset目录下
目录格式如下:
图片以JPG格式放在JPEGImages中
标签放在Annotations中
YOLO格式需要的txt放在txt中
2、划分数据集
(1)VOC格式先将Annotations的XML转换成txt
import xml.etree.ElementTree as ET
import os, cv2
import numpy as np
from os import listdir
from os.path import join
classes = []
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(xmlpath, xmlname):
with open(xmlpath, "r", encoding='utf-8') as in_file:
txtname = xmlname[:-4] + '.txt'
txtfile = os.path.join(txtpath, txtname)
tree = ET.parse(in_file)
root = tree.getroot()
filename = root.find('filename')
img = cv2.imdecode(np.fromfile('{}/{}.{}'.format(imgpath, xmlname[:-4], postfix), np.uint8), cv2.IMREAD_COLOR)
h, w = img.shape[:2]
res = []
for obj in root.iter('object'):
cls = obj.find('name').text
if cls not in classes:
classes.append(cls)
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
res.append(str(cls_id) + " " + " ".join([str(a) for a in bb]))
if len(res) != 0:
with open(txtfile, 'w+') as f:
f.write('\n'.join(res))
if __name__ == "__main__":
postfix = 'jpg'
imgpath = 'VOCdevkit/JPEGImages'
xmlpath = 'VOCdevkit/Annotations'
txtpath = 'VOCdevkit/txt'
if not os.path.exists(txtpath):
os.makedirs(txtpath, exist_ok=True)
list = os.listdir(xmlpath)
error_file_list = []
for i in range(0, len(list)):
try:
path = os.path.join(xmlpath, list[i])
if ('.xml' in path) or ('.XML' in path):
convert_annotation(path, list[i])
print(f'file {list[i]} convert success.')
else:
print(f'file {list[i]} is not xml format.')
except Exception as e:
print(f'file {list[i]} convert error.')
print(f'error message:\n{e}')
error_file_list.append(list[i])
print(f'this file convert failure\n{error_file_list}')
print(f'Dataset Classes:{classes}')
(2)划分数据集
import os, shutil, random
random.seed(0)
import numpy as np
from sklearn.model_selection import train_test_split
val_size = 0.1
test_size = 0.2
postfix = 'jpg'
imgpath = 'VOCdevkit/JPEGImages'
txtpath = 'VOCdevkit/txt'
os.makedirs('images/train', exist_ok=True)
os.makedirs('images/val', exist_ok=True)
os.makedirs('images/test', exist_ok=True)
os.makedirs('labels/train', exist_ok=True)
os.makedirs('labels/val', exist_ok=True)
os.makedirs('labels/test', exist_ok=True)
listdir = np.array([i for i in os.listdir(txtpath) if 'txt' in i])
random.shuffle(listdir)
train, val, test = listdir[:int(len(listdir) * (1 - val_size - test_size))], listdir[int(len(listdir) * (1 - val_size - test_size)):int(len(listdir) * (1 - test_size))], listdir[int(len(listdir) * (1 - test_size)):]
print(f'train set size:{len(train)} val set size:{len(val)} test set size:{len(test)}')
for i in train:
shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/train/{}.{}'.format(i[:-4], postfix))
shutil.copy('{}/{}'.format(txtpath, i), 'labels/train/{}'.format(i))
for i in val:
shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/val/{}.{}'.format(i[:-4], postfix))
shutil.copy('{}/{}'.format(txtpath, i), 'labels/val/{}'.format(i))
for i in test:
shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/test/{}.{}'.format(i[:-4], postfix))
shutil.copy('{}/{}'.format(txtpath, i), 'labels/test/{}'.format(i))
划分完数据集后:
三、将整个文件压缩为ZIP文件
四、创建AutoDL实例
五、上传刚才压缩好的YOLOv10,并创建终端解压
解压:
在终端中输入unzip yolov10-main
六、配置环境
1、在终端中先进入yolov10-main的目录
cd yolov10-main
2、下载环境需求
在终端中输入pip install -r requirements.txt
回车等待
七、创建数据集的.yaml文件
train: /root/yolov10-main/dataset/images/train
val: /root/yolov10-main/dataset/images/val
test: /root/yolov10-main/dataset/images/test
nc: 1
names: ['pothole']
八、训练
1、方法一
yolo detect train data=自己数据集.yaml model=yolov10n.yaml epochs=100 batch=32 imgsz=640 device=0
2、方法二
创建train.py
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOv10
if __name__ == '__main__':
model = YOLOv10('ultralytics/cfg/models/v10/yolov10n.yaml')
model.load('yolov10n.pt') # loading pretrain weights
model.train(data='dataset/pothole.yaml',
cache=False,
imgsz=640,
epochs=100,
batch=32,
close_mosaic=0,
workers=8,
device='0',
optimizer='SGD', # using SGD
project='runs/train',
name='exp',
)
在终端中运行:
root@autodl-container-892a42a68f-b0b3bc8e:~/yolov10-main# python train.py
开始训练:
100轮训练完毕
九、验证
1、方法一
官网方法
yolo val model=jameslahm/yolov10{n/s/m/b/l/x} data=coco.yaml batch=256
2、方法二(自己创建Python脚本)
创建val.py
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOv10
if __name__ == '__main__':
model = YOLOv10('runs/train/exp/weights/best.pt')
model.val(data='dataset/pothole.yaml',
split='val',
imgsz=640,
batch=16,
# iou=0.7,
# rect=False,
# save_json=True, # if you need to cal coco metrice
project='runs/val',
name='exp',
)
在终端中运行
root@autodl-container-892a42a68f-b0b3bc8e:~/yolov10-main# python val.py
十、测试
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOv10
if __name__ == '__main__':
model = YOLOv10('runs/train/exp/weights/best.pt')
model.val(data='dataset/pothole.yaml',
split='test',
imgsz=640,
batch=16,
# iou=0.7,
# rect=False,
# save_json=True, # if you need to cal coco metrice
project='runs/test',
name='exp',
)
运行脚本:
python test.py
GitHub 加速计划 / yo / yolov10
41
5
下载
YOLOv10: Real-Time End-to-End Object Detection
最近提交(Master分支:29 天前 )
6fbaf42b - 3 个月前
cd2f79c7
5 个月前
更多推荐
已为社区贡献3条内容
所有评论(0)