1 论文解读

paper:VIT

1.1 VIT模型架构如下图所示:

  • 图片原始输入维度 H * W * C
  • 在H和W按像素P切分,则H 、W可分割为 NPP, N=HW/(PP),N为输入transform序列的长度。
  • x ∈ R H ∗ W ∗ C = > x ∈ R N ∗ P 2 ∗ C x \in R^{H*W*C} => x\in R^{N*P^2*C} xRHWC=>xRNP2C
  • 固定每层的维度D不变,The Transformer uses constant latent vector size D through all of its layers, so we flatten the patches and map to D dimensions with a trainable linear projection
  • 在N序列长度的基础上,增加一个Class token,类似bert用于分类任务学习
  • 增加位置信息,使用拉长后的一维数据作为位置编码信息。(使用图片的二维坐标位置,模型效果没有明显改善)
    VIT模型架构

VIT模型公式

输入 x ∈ N ∗ p 2 ∗ C 输入 x \in N*p^2*C 输入xNp2C
x p 1 ∈ P 2 ∗ C x_p^1 \in P^2*C xp1P2C
E ∈ ( P 2 ∗ C ) ∗ D E \in (P^2*C) *D E(P2C)D
其中E对序列N中的每一个xi都是一样的,z0的维度为(N+1)* D
公式(2)MSA(多头注意力)不改变z0的维度
公式(3)经过MLP层后与原始z相加,类似残差网络
公式(4)只取z的第一个值(之前在第一个位置手动添加了一个class标识)用于分类任务,进行模型学习
在这里插入图片描述

2 代码实现

2.1 embedding 层

  • 模型输入x.shape=[16,3,224,224] #16为batch_size
  • x输入patch_embedding 后,shape =[16,768,14,14]
  • 将上面的patch_embedding最后两位(H,W)拉平后,与channel调换位置,shape=[16,196,768]
  • 然后与手动的cls_token拼接 shape=[16,197,768]
  • 加入位置信息后,即可得到embdeeing的输出,shape=[16,197,768]
self.patch_embeddings = Conv2d(in_channels=in_channels,
                                       out_channels=config.hidden_size,
                                       kernel_size=16,
                                       stride=16)
  • cls_token shape=[1,1,768]
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
#备注:n_patches=14*14   ,config.hidden_size=768
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))

2.2 block层

  • 输入为Embedding层输入的x ;shape=[16,197,768]
  • 通过layer_norm层,,shape不变
  • 通过attn层,构建多头注意力,query,key,value的shape都为shape=[16,12,197,64]
  • 加上原始的x,纪委multi-head的输出,shape=[16,197,768]
  • 再经过layer_norm和全连接层,加上上层x,即为block的输出,shape=[16,197,768]

layer_norm层

  self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)

2.3Encoder层

经过L个Block层,输出结果即为encoder层,shape=[16,197,768]

2.4 模型输出

  • transform最后的输出层为 shape=[16,197,768]
  • 取序列197的第一个作为输出x,x shape=[16,768]
  • 输出x,经过全连接层,shape=[16,num_class]
  • 模型loss为交叉熵损失

3 transformer 结构

  (embeddings): Embeddings(
    (patch_embeddings): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
    (dropout): Dropout(p=0.1, inplace=False)
  )
  (encoder): Encoder(
    (layer): ModuleList(
      (0): Block(
        (attention_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
        (ffn_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
        (ffn): Mlp(
          (fc1): Linear(in_features=768, out_features=3072, bias=True)
          (fc2): Linear(in_features=3072, out_features=768, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (attn): Attention(
          (query): Linear(in_features=768, out_features=768, bias=True)
          (key): Linear(in_features=768, out_features=768, bias=True)
          (value): Linear(in_features=768, out_features=768, bias=True)
          (out): Linear(in_features=768, out_features=768, bias=True)
          (attn_dropout): Dropout(p=0.0, inplace=False)
          (proj_dropout): Dropout(p=0.0, inplace=False)
          (softmax): Softmax(dim=-1)
        )
      )
... 省略10层Block
      (11): Block(
        (attention_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
        (ffn_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
        (ffn): Mlp(
          (fc1): Linear(in_features=768, out_features=3072, bias=True)
          (fc2): Linear(in_features=3072, out_features=768, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (attn): Attention(
          (query): Linear(in_features=768, out_features=768, bias=True)
          (key): Linear(in_features=768, out_features=768, bias=True)
          (value): Linear(in_features=768, out_features=768, bias=True)
          (out): Linear(in_features=768, out_features=768, bias=True)
          (attn_dropout): Dropout(p=0.0, inplace=False)
          (proj_dropout): Dropout(p=0.0, inplace=False)
          (softmax): Softmax(dim=-1)
        )
      )
    )
    (encoder_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
  )
)

3 代码总览

3.1 Embedding类

class Embeddings(nn.Module):
    """Construct the embeddings from patch, position embeddings.
    """
    def __init__(self, config, img_size, in_channels=3):
        super(Embeddings, self).__init__()
        self.hybrid = None
        img_size = _pair(img_size)

        if config.patches.get("grid") is not None:
            grid_size = config.patches["grid"]
            patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1])
            n_patches = (img_size[0] // 16) * (img_size[1] // 16)
            self.hybrid = True
        else:
            patch_size = _pair(config.patches["size"])
            n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
            self.hybrid = False

        if self.hybrid:
            self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers,
                                         width_factor=config.resnet.width_factor)
            in_channels = self.hybrid_model.width * 16
        self.patch_embeddings = Conv2d(in_channels=in_channels,
                                       out_channels=config.hidden_size,
                                       kernel_size=patch_size,
                                       stride=patch_size)
        self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))
        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))

        self.dropout = Dropout(config.transformer["dropout_rate"])

    def forward(self, x):
        print(x.shape)
        B = x.shape[0]
        cls_tokens = self.cls_token.expand(B, -1, -1)
        print(cls_tokens.shape)
        if self.hybrid:
            x = self.hybrid_model(x)
        x = self.patch_embeddings(x)
        print(x.shape)
        x = x.flatten(2)
        print(x.shape)
        x = x.transpose(-1, -2)
        print(x.shape)
        x = torch.cat((cls_tokens, x), dim=1)
        print(x.shape)

        embeddings = x + self.position_embeddings
        print(embeddings.shape)
        embeddings = self.dropout(embeddings)
        print(embeddings.shape)
        return embeddings

3.2 Block层

class Block(nn.Module):
def init(self, config, vis):
super(Block, self).init()
self.hidden_size = config.hidden_size
self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
self.ffn = Mlp(config)
self.attn = Attention(config, vis)

def forward(self, x):
    print(x.shape)
    h = x
    x = self.attention_norm(x)
    print(x.shape)
    x, weights = self.attn(x)
    x = x + h
    print(x.shape)

    h = x
    x = self.ffn_norm(x)
    print(x.shape)
    x = self.ffn(x)
    print(x.shape)
    x = x + h
    print(x.shape)
    return x, weights

3 encoder层

class Encoder(nn.Module):
    def __init__(self, config, vis):
        super(Encoder, self).__init__()
        self.vis = vis
        self.layer = nn.ModuleList()
        self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)
        for _ in range(config.transformer["num_layers"]):
            layer = Block(config, vis)
            self.layer.append(copy.deepcopy(layer))
 
    def forward(self, hidden_states):
        print(hidden_states.shape)
        attn_weights = []
        for layer_block in self.layer:
            hidden_states, weights = layer_block(hidden_states)
            if self.vis:
                attn_weights.append(weights)
        encoded = self.encoder_norm(hidden_states)
        return encoded, attn_weights

attention 层

class Attention(nn.Module):
    def __init__(self, config, vis):
        super(Attention, self).__init__()
        self.vis = vis
        self.num_attention_heads = config.transformer["num_heads"]
        self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = Linear(config.hidden_size, self.all_head_size)
        self.key = Linear(config.hidden_size, self.all_head_size)
        self.value = Linear(config.hidden_size, self.all_head_size)

        self.out = Linear(config.hidden_size, config.hidden_size)
        self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
        self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])

        self.softmax = Softmax(dim=-1)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        print(new_x_shape)
        x = x.view(*new_x_shape)
        print(x.shape)
        print(x.permute(0, 2, 1, 3).shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states):
        print(hidden_states.shape)
        mixed_query_layer = self.query(hidden_states)
        print(mixed_query_layer.shape)
        mixed_key_layer = self.key(hidden_states)
        print(mixed_key_layer.shape)
        mixed_value_layer = self.value(hidden_states)
        print(mixed_value_layer.shape)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        print(query_layer.shape)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        print(key_layer.shape)
        value_layer = self.transpose_for_scores(mixed_value_layer)
        print(value_layer.shape)

        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        print(attention_scores.shape)
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        print(attention_scores.shape)
        attention_probs = self.softmax(attention_scores)
        print(attention_probs.shape)
        weights = attention_probs if self.vis else None
        attention_probs = self.attn_dropout(attention_probs)
        print(attention_probs.shape)

        context_layer = torch.matmul(attention_probs, value_layer)
        print(context_layer.shape)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        print(context_layer.shape)
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        print(context_layer.shape)
        attention_output = self.out(context_layer)
        print(attention_output.shape)
        attention_output = self.proj_dropout(attention_output)
        print(attention_output.shape)
        return attention_output, weights

GitHub 加速计划 / vi / vision
15.85 K
6.89 K
下载
pytorch/vision: 一个基于 PyTorch 的计算机视觉库,提供了各种计算机视觉算法和工具,适合用于实现计算机视觉应用程序。
最近提交(Master分支:3 个月前 )
518ee93d 4 天前
7d077f13 6 天前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐