使用python版本的opencv去除图像中的光照不均匀

在图像处理中,如果图像中存在光照不均匀,则会影响图像处理的效果,比如在图像文本识别和图像分割中。本博客对于图像均衡化的处理主要参考文章:一种基于亮度均衡的图像阈值分割技术,以有关于C++的实现代码:opencv 一种不均匀光照的补偿方法

使用该方法主要的原因是最近在弄Tesseract的文字识别,需要识别拍摄照片中的字母,但是照片为室外拍摄,具有不同的光照影响,导致识别率很低,因此采用该方法进行处理,最后有效的提升了识别率,实现有光照影响的Tesseract文字识别。

全部代码如下:

import cv2
import numpy as np

def unevenLightCompensate(img, blockSize):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    average = np.mean(gray)

    rows_new = int(np.ceil(gray.shape[0] / blockSize))
    cols_new = int(np.ceil(gray.shape[1] / blockSize))

    blockImage = np.zeros((rows_new, cols_new), dtype=np.float32)
    for r in range(rows_new):
        for c in range(cols_new):
            rowmin = r * blockSize
            rowmax = (r + 1) * blockSize
            if (rowmax > gray.shape[0]):
                rowmax = gray.shape[0]
            colmin = c * blockSize
            colmax = (c + 1) * blockSize
            if (colmax > gray.shape[1]):
                colmax = gray.shape[1]

            imageROI = gray[rowmin:rowmax, colmin:colmax]
            temaver = np.mean(imageROI)
            blockImage[r, c] = temaver

    blockImage = blockImage - average
    blockImage2 = cv2.resize(blockImage, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_CUBIC)
    gray2 = gray.astype(np.float32)
    dst = gray2 - blockImage2
    dst = dst.astype(np.uint8)
    dst = cv2.GaussianBlur(dst, (3, 3), 0)
    dst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)

    return dst

if __name__ == '__main__':
    file = 'refined_receipt.jpg'
    blockSize = 16
    img = cv2.imread(file)
    dst = unevenLightCompensate(img, blockSize)

    result = np.concatenate([img, dst], axis=1)

    cv2.imshow('result', result)
    cv2.waitKey(0)

效果如下所示:
result
调节的参数有blockSize的尺寸,以及最后的高斯去噪GaussianBlur和其核的大小,本文取的3.

GitHub 加速计划 / opencv31 / opencv
238
21
下载
OpenCV: 开源计算机视觉库
最近提交(Master分支:4 个月前 )
6950bedb Use Mat::total() in Darknet IO 2 天前
105a7747 doc: update image codec configuration reference (add AVIF, fix JPEG XL) #28393 This PR updates the build configuration documentation to: - Add AVIF to the supported format list (it was missing). - Clarify that some codecs (AVIF, JPEG XL) do not support BUILD_* options because OpenCV does not bundle their source code. - Update the description to include "write" capabilities for these formats. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake 3 天前
Logo

AtomGit 是由开放原子开源基金会联合 CSDN 等生态伙伴共同推出的新一代开源与人工智能协作平台。平台坚持“开放、中立、公益”的理念,把代码托管、模型共享、数据集托管、智能体开发体验和算力服务整合在一起,为开发者提供从开发、训练到部署的一站式体验。

更多推荐