【笔记】Ubuntu中Llama3中文微调,并加载微调后的模型:中文微调数据集介绍、如何使用Ollama 和 LM studio本地加载Fine Tuning后的模型,ollama的安装使用和卸载
·
实践:about ollama
安装
curl -fsSL https://ollama.com/install.sh | sh
部署
ollama create example -f Modelfile
运行
ollama run example
终止(ollama加载的大模型将会停止占用显存,此时ollama属于失联状态,部署和运行操作失效,会报错:
Error: could not connect to ollama app, is it running?
需要启动后,才可以进行部署和运行操作)
systemctl stop ollama.service
终止后启动(启动后,可以接着使用ollama 部署和运行大模型)
systemctl start ollama.service
Modelfile contents:
FROM /home/wangbin/Desktop/Llama3/dir-unsloth.F16.gguf
PARAMETER stop "<|im_start|>"
PARAMETER stop "<|im_end|>"
TEMPLATE """
<|im_start|>system
{{ .System }}<|im_end|>
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"""
PARAMETER temperature 0.8
PARAMETER num_ctx 8192
PARAMETER stop "<|system|>"
PARAMETER stop "<|user|>"
PARAMETER stop "<|assistant|>"
SYSTEM """You are a helpful, smart, kind, and efficient AI assistant.Your name is Aila. You always fulfill the user's requests to the best of your ability."""
ollama 参数:
(unsloth_env) wangbin@wangbin-LEGION-REN9000K-34IRZ:~/Desktop/Llama3$ ollama
Usage:
ollama [flags]
ollama [command]
Available Commands:
serve Start ollama
create Create a model from a Modelfile
show Show information for a model
run Run a model
pull Pull a model from a registry
push Push a model to a registry
list List models
ps List running models
cp Copy a model
rm Remove a model
help Help about any command
Flags:
-h, --help help for ollama
-v, --version Show version information
卸载
1.Stop the Ollama Service
First things first, we need to stop the Ollama service from running. This ensures a smooth uninstallation process. Open your terminal and enter the following command:
sudo systemctl stop ollama
This command halts the Ollama service.
2.Disable the Ollama Service
Now that the service is stopped, we need to disable it so that it doesn’t start up again upon system reboot. Enter the following command:
sudo systemctl disable ollama
This ensures that Ollama won’t automatically start up in the future.
3.Remove the Service File
We need to tidy up by removing the service file associated with Ollama. Enter the following command:
sudo rm /etc/systemd/system/ollama.service
This deletes the service file from your system.
4.Delete the Ollama Binary
Next up, we’ll remove the Ollama binary itself. Enter the following command:
sudo rm $(which ollama)
This command removes the binary from your bin directory.
5.Remove Downloaded Models and Ollama User
Lastly, we’ll clean up any remaining bits and pieces. Enter the following commands one by one:
sudo rm -r /usr/share/ollama
sudo userdel ollama sudo groupdel ollama
These commands delete any downloaded models and remove the Ollama user and group from your system.
正文:
清洗PDF:
清洗PDF
import PyPDF2
import re
def clean_extracted_text(text):
"""Clean and preprocess extracted text."""
# Remove chapter titles and sections
text = re.sub(r'^(Introduction|Chapter \d+:|What is|Examples:|Chapter \d+)', '', text, flags=re.MULTILINE)
text = re.sub(r'ctitious', 'fictitious', text)
text = re.sub(r'ISBN[- ]13: \d{13}', '', text)
text = re.sub(r'ISBN[- ]10: \d{10}', '', text)
text = re.sub(r'Library of Congress Control Number : \d+', '', text)
text = re.sub(r'(\.|\?|\!)(\S)', r'\1 \2', text) # Ensure space after punctuation
text = re.sub(r'All rights reserved|Copyright \d{4}', '', text)
text = re.sub(r'\n\s*\n', '\n', text)
text = re.sub(r'[^\x00-\x7F]+', ' ', text)
text = re.sub(r'\s{2,}', ' ', text)
# Remove all newlines and replace newlines only after periods
text = text.replace('\n', ' ')
text = re.sub(r'(\.)(\s)', r'\1\n', text)
return text
def extract_text_from_pdf(pdf_path):
"""Extract text from a PDF file."""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
if page.extract_text():
text += page.extract_text() + ' ' # Append text of each page
return text
def main():
pdf_path = '/Users/charlesqin/Documents/The Art of Asking ChatGPT.pdf' # Path to your PDF file
extracted_text = extract_text_from_pdf(pdf_path)
cleaned_text = clean_extracted_text(extracted_text)
# Output the cleaned text to a file
with open('cleaned_text_output.txt', 'w', encoding='utf-8') as file:
file.write(cleaned_text)
if __name__ == '__main__':
main()
微调代码:
from unsloth import FastLanguageModel
import torch
from trl import SFTTrainer
from transformers import TrainingArguments
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit",
"unsloth/gemma-7b-it-bnb-4bit", # Instruct version of Gemma 7b
"unsloth/gemma-2b-bnb-4bit",
"unsloth/gemma-2b-it-bnb-4bit", # Instruct version of Gemma 2b
"unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/llama-3-8b-bnb-4bit",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
from datasets import load_dataset
file_path = "/home/Ubuntu/alpaca_gpt4_data_zh.json"
dataset = load_dataset("json", data_files={"train": file_path}, split="train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
max_steps = 60,
learning_rate = 2e-4,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
),
)
trainer_stats = trainer.train()
model.save_pretrained_gguf("dir", tokenizer, quantization_method = "q4_k_m")
model.save_pretrained_gguf("dir", tokenizer, quantization_method = "q8_0")
model.save_pretrained_gguf("dir", tokenizer, quantization_method = "f16")
Ollama:
LM Studio:
我们使用经过Fine Tuning以后的Llama3大模型,询问它问题:
然后我们使用没有经过Fine Tuning的Llama3,还是用刚才的问题询问它:
Reference link:https://www.youtube.com/watch?v=oxTVzGwKeoU
更多推荐
已为社区贡献15条内容
所有评论(0)