yolov9 中文标签乱码与训练注意事项
yolov9
YOLOv9是前沿的对象检测框架,它通过利用可编程梯度信息实现高效学习,带来显著的性能提升。这个开源项目在MS COCO数据集上展示出卓越的准确性与速度平衡,模型大小从轻量级到大型不等,满足不同场景需求。例如,YOLOv9-C在保持紧凑的参数量(25.3M)下,实现了53.0%的高平均精度。开发者不仅能够享受到即刻部署的乐趣,还能通过丰富的社区资源进行模型转换、加速推理和多任务学习,支持如TensorRT、ONNX、OpenVINO等技术,以及在ROS中的集成应用。无论是深入研究还是实际项目应用,YOLOv9都是一个强大且灵活的选择,为计算机视觉领域的爱好者和专业人士提供了一个高性能的工具包。【此简介由AI生成】
项目地址:https://gitcode.com/gh_mirrors/yo/yolov9
免费下载资源
·
中文乱码解决
yolov9 加载中文标签显示乱码解决办法-CSDN博客https://blog.csdn.net/bill125bill/article/details/136609839参考如上博客。同时,需要留意几点内容。
修改完这部分代码以后,需要重新训练才能看到效果,且matrix混淆矩阵等,需要完全训练完毕才能看见。
训练需要注意的问题
报错解决
报错1:
AttributeError: 'list' object has no attribute 'device'
报错1解决方案:
报错2:
AttributeError: 'list' object has no attribute 'view'
报错2解决:训练需要用到train_dual.py而不是train.py
原因如下,WongKinYiu大神做出了回应,训练yolov9模型需要用train_dual.py而不是train.py
本人训练的超参数设置
def parse_opt(known=False):
parser = argparse.ArgumentParser()
# parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='initial weights path')
# parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--weights', type=str, default='D:/Code/yolov9/yolov9-c.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='D:/Code/yolov9/models/detect/yolov9-c.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'D:/Code/yolov9/data/datasets/my_data.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-high.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=688, help='total training epochs')
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--noplots', action='store_true', help='save no plot files')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW', 'LION'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--flat-cos-lr', action='store_true', help='flat cosine LR scheduler')
parser.add_argument('--fixed-lr', action='store_true', help='fixed LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
parser.add_argument('--min-items', type=int, default=0, help='Experimental')
parser.add_argument('--close-mosaic', type=int, default=0, help='Experimental')
# Logger arguments
parser.add_argument('--entity', default=None, help='Entity')
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
batch-size=16就可以让24GB显存的GPU近乎满载运行训练代码了。因此batch-size大于16的参数不建议使用。如果是小于16GB显存的GPU。则建议使用batchsize=8来运行。
GitHub 加速计划 / yo / yolov9
8.7 K
1.33 K
下载
YOLOv9是前沿的对象检测框架,它通过利用可编程梯度信息实现高效学习,带来显著的性能提升。这个开源项目在MS COCO数据集上展示出卓越的准确性与速度平衡,模型大小从轻量级到大型不等,满足不同场景需求。例如,YOLOv9-C在保持紧凑的参数量(25.3M)下,实现了53.0%的高平均精度。开发者不仅能够享受到即刻部署的乐趣,还能通过丰富的社区资源进行模型转换、加速推理和多任务学习,支持如TensorRT、ONNX、OpenVINO等技术,以及在ROS中的集成应用。无论是深入研究还是实际项目应用,YOLOv9都是一个强大且灵活的选择,为计算机视觉领域的爱好者和专业人士提供了一个高性能的工具包。【此简介由AI生成】
最近提交(Master分支:3 个月前 )
5b1ea9a8 - 5 个月前
0bf4f52b - 5 个月前
更多推荐
已为社区贡献7条内容
所有评论(0)