YOLOv9全网最新改进系列::YOLOv9完美融合双卷积核(DualConv)来构建轻量级深度神经网络,目标检测模型有效涨点神器!!!

YOLOv9原文链接戳这里,原文全文翻译请关注B站Ai学术叫叫首er

B站全文戳这里!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!


DualConv: Dual Convolutional Kernels for
Lightweight Deep Neural Networks(提出原文戳这)

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
截止到发稿时,B站YOLOv9最新改进系列的源码包,已更新了16种的改进!自己排列组合2-4种后,考虑位置不同后可排列组合上千种!!专注AI学术,关注B站博主:Ai学术叫叫兽er!

摘要

CNN 架构通常对内存和计算要求很高,这使得它们对于硬件资源有限的嵌入式系统不可行。 我们提出双卷积核(DualConv)来构建轻量级深度神经网络。 DualConv 结合了 3×3 和 1×1 卷积核来同时处理相同的输入特征图通道,并利用组卷积技术来有效地排列卷积滤波器。 DualConv 可用于任何 CNN 模型,例如用于图像分类的 VGG-16 和 ResNet-50、用于对象检测的 YOLO 和 R-CNN 或用于语义分割的 FCN。 在本文中,我们广泛测试了 DualConv 的分类功能,因为这些网络架构构成了许多其他任务的骨干。 我们还在 YOLO-V3 上测试了 DualConv 的图像检测功能。 实验结果表明,结合我们的结构创新,DualConv 显着降低了深度神经网络的计算成本和参数数量,同时在某些情况下令人惊讶地实现了比原始模型略高的精度。 我们使用 DualConv 将轻量级 MobileNetV2 的参数数量进一步减少了 54%,而在 CIFAR-100 数据集上的准确率仅下降了 0.68%。 当参数数量不是问题时,DualConv 在相同数据集上将 MobileNetV1 的准确率提高了 4.11%。 此外,DualConv 显着提高了 YOLO-V3 目标检测速度,并将其在 PASCAL VOC 数据集上的准确率提高了 4.4%。

Convolutional filter designs of (a) standard convolution, (b) depthwise separable convolution, (c) group convolution, (d) heterogeneous convolution, and (e) the proposed dual convolution. M is the number of input channels (i.e., the depth of input feature map), N is the number of convolutional filters and also the number of output channels (i.e., the depth of output feature map), Di is the width and height dimension of input feature map, K × K is the convolutional kernel size, G is the number of groups in group convolution and dual convolution, and 1/P is the ratio of 3×3 convolutional kernels in heterogeneous convolution. Note that the heterogeneous filters are arranged in a shifted manner [18].(a) 标准卷积、(b) 深度可分离卷积、© 组卷积、(d) 异构卷积和 (e) 所提出的双卷积的卷积滤波器设计。 M是输入通道数(即输入特征图的深度),N是卷积滤波器的数量,也是输出通道的数量(即输出特征图的深度),Di是宽度和高度维度 输入特征图的,K×K是卷积核大小,G是组卷积和对偶卷积中的组数,1/P是异构卷积中3×3卷积核的比例。 请注意,异构滤波器以移位的方式排列[18]。

我们提出了 DualConv,它将 3×3 组卷积与 1×1 逐点卷积相结合,解决了跨通道通信和原始输入特征图中信息保存的问题。 与 HetConv 相比,DualConv 通过添加最少的参数来提高网络性能。 DualConv应用于常见的网络结构来执行图像分类和目标检测。 通过比较标准卷积和 DualConv 的实验结果,证明了所提出的 DualConv 的有效性和效率。 从实验结果可以看出,DualConv 可以集成在标准网络架构和轻量级网络架构中,以提高网络精度并减少网络参数、计算成本和推理时间。 我们还证明了 DualConv 可以很好地适应各种图像数据集,并具有很强的泛化能力。 未来的研究工作将集中在嵌入式设备上的部署,以进一步证明 DualConv 在实际应用中的效率。

跑出结果后-相关方法详情请结合B站视频阅读全文,融入自己文章中!!!

2 修改步骤!

2.1 修改YAML文件

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

2.2 新建.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

2.3 修改tasks.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

三、验证是否成功即可

执行命令

python train.py

改完收工!
关注B站:Ai学术叫叫兽er
从此走上科研快速路
遥遥领先同行!!!!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

GitHub 加速计划 / yo / yolov9
8.7 K
1.33 K
下载
YOLOv9是前沿的对象检测框架,它通过利用可编程梯度信息实现高效学习,带来显著的性能提升。这个开源项目在MS COCO数据集上展示出卓越的准确性与速度平衡,模型大小从轻量级到大型不等,满足不同场景需求。例如,YOLOv9-C在保持紧凑的参数量(25.3M)下,实现了53.0%的高平均精度。开发者不仅能够享受到即刻部署的乐趣,还能通过丰富的社区资源进行模型转换、加速推理和多任务学习,支持如TensorRT、ONNX、OpenVINO等技术,以及在ROS中的集成应用。无论是深入研究还是实际项目应用,YOLOv9都是一个强大且灵活的选择,为计算机视觉领域的爱好者和专业人士提供了一个高性能的工具包。【此简介由AI生成】
最近提交(Master分支:3 个月前 )
5b1ea9a8 - 5 个月前
0bf4f52b - 5 个月前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐