paddleocr 的使用要点2 (仪表识别)
要点:
- 文本检测 主要作用是找出文本所在的位置
PP-OCR检测效果不好,该如何优化?
A: 具体问题具体分析:
- 如果在你的场景上检测效果不可用,首选是在你的数据上做finetune训练;
- 如果图像过大,文字过于密集,建议不要过度压缩图像,可以尝试修改检测预处理的resize逻辑,防止图像被过度压缩;
- 检测框大小过于紧贴文字或检测框过大,可以调整db_unclip_ratio这个参数,加大参数可以扩大检测框,减小参数可以减小检测框大小;
- 检测框存在很多漏检问题,可以减小DB检测后处理的阈值参数det_db_box_thresh,防止一些检测框被过滤掉,也可以尝试设置det_db_score_mode为'slow';
- 其他方法可以选择use_dilation为True,对检测输出的feature map做膨胀处理,一般情况下,会有效果改善;
1 文本检测理论
文本检测任务是找出图像或视频中的文字位置。不同于目标检测任务,目标检测不仅要解决定位问题,还要解决目标分类问题。
文本在图像中的表现形式可以视为一种‘目标’,通用的目标检测的方法也适用于文本检测,从任务本身上来看:
- 目标检测:给定图像或者视频,找出目标的位置(box),并给出目标的类别;
- 文本检测:给定输入图像或者视频,找出文本的区域,可以是单字符位置或者整个文本行位置;
2 OCR 文本检测实战
- 安装paddleocr
- 一行命令运行DB算法得到检测结果
- 可视化文本检测结果
安装paddleocr whl包
!pip install --upgrade pip
!pip install paddleocr
一行命令实现文本检测
初次运行时,paddleocr会自动下载并使用PaddleOCR的PP-OCRv2轻量级模型。
使用安装好的paddleocr 以./12.jpg为输入图像,将得到以下预测结果:
预测结果一共包含四个文本框,每一行包含四个坐标点,代表一个文本框的坐标集合,从左上角起以顺时针顺序排列。
paddleocr命令行调用文本检测模型预测图像./12.jpg的方式如下:
import os
# 修改Aistudio代码运行的默认目录为 /home/aistudio/
os.chdir("/home/aistudio/")
# --image_dir 指向要预测的图像路径 --rec false表示不使用识别识别,只执行文本检测
! paddleocr --image_dir ./12.jpg --rec false
另外,除了命令行使用方式,paddleocr也提供了代码调用方式,如下:
# 1. 从paddleocr中import PaddleOCR类
from paddleocr import PaddleOCR
# 2. 声明PaddleOCR类
ocr = PaddleOCR()
img_path = './12.jpg'
# 3. 执行预测
result = ocr.ocr(img_path, rec=False)
print(f"The predicted text box of {img_path} are follows.")
print(result)
可视化文本检测预测结果
import numpy as np
import cv2
import matplotlib.pyplot as plt
# 在notebook中使用matplotlib.pyplot绘图时,需要添加该命令进行显示
%matplotlib inline
# 4. 可视化检测结果
image = cv2.imread(img_path)
boxes = [line[0] for line in result]
for box in result:
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
# 画出读取的图片
plt.figure(figsize=(10, 10))
plt.imshow(image)
3 DB文本检测算法详细实现
DB是一个基于分割的文本检测算法,其提出可微分阈值Differenttiable Binarization module(DB module)采用动态的阈值区分文本区域与背景。
3.1 DB文本检测模型构建
DB文本检测模型可以分为三个部分:
- Backbone网络,负责提取图像的特征
- FPN网络,特征金字塔结构增强特征
- Head网络,计算文本区域概率图
本节使用PaddlePaddle分别实现上述三个网络模块,并完成完整的网络构建。
# 首次运行需要打开下一行的注释,下载PaddleOCR代码
#!git clone https://gitee.com/paddlepaddle/PaddleOCR
import os
# 修改代码运行的默认目录为 /home/aistudio/PaddleOCR
os.chdir("/home/aistudio/PaddleOCR")
# 安装PaddleOCR第三方依赖
!pip install --upgrade pip
!pip install -r requirements.txt
# https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/modeling/backbones/det_mobilenet_v3.py
from ppocr.modeling.backbones.det_mobilenet_v3 import MobileNetV3
如果您希望使用ResNet作为Backbone训练,可以在PaddleOCR代码中选择ResNet,或者从PaddleClas中选择backbone模型。
DB的Backbone用于提取图像的多尺度特征,如下代码所示,假设输入的形状为[640, 640],backbone网络的输出有四个特征,其形状分别是 [1, 16, 160, 160],[1, 24, 80, 80], [1, 56, 40, 40],[1, 480, 20, 20]。 这些特征将输入给特征金字塔FPN网络进一步的增强特征。
import paddle
fake_inputs = paddle.randn([1, 3, 640, 640], dtype="float32")
# 1. 声明Backbone
model_backbone = MobileNetV3()
model_backbone.eval()
# 2. 执行预测
outs = model_backbone(fake_inputs)
# 3. 打印网络结构
print(model_backbone)
# 4. 打印输出特征形状
for idx, out in enumerate(outs):
print("The index is ", idx, "and the shape of output is ", out.shape)
FPN网络
特征金字塔结构FPN是一种卷积网络来高效提取图片中各维度特征的常用方法。
# https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/modeling/necks/db_fpn.py
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class DBFPN(nn.Layer):
def __init__(self, in_channels, out_channels, **kwargs):
super(DBFPN, self).__init__()
self.out_channels = out_channels
# DBFPN详细实现参考: https://github.com/PaddlePaddle/PaddleOCRblob/release%2F2.4/ppocr/modeling/necks/db_fpn.py
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.in5_conv(c5)
in4 = self.in4_conv(c4)
in3 = self.in3_conv(c3)
in2 = self.in2_conv(c2)
# 特征上采样
out4 = in4 + F.upsample(
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
out3 = in3 + F.upsample(
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
out2 = in2 + F.upsample(
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
p5 = self.p5_conv(in5)
p4 = self.p4_conv(out4)
p3 = self.p3_conv(out3)
p2 = self.p2_conv(out2)
# 特征上采样
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
return fuse
FPN网络的输入为Backbone部分的输出,输出特征图的高度和宽度为原图的四分之一。假设输入图像的形状为[1, 3, 640, 640],FPN输出特征的高度和宽度为[160, 160]
import paddle
# 1. 从PaddleOCR中import DBFPN
from ppocr.modeling.necks.db_fpn import DBFPN
# 2. 获得Backbone网络输出结果
fake_inputs = paddle.randn([1, 3, 640, 640], dtype="float32")
model_backbone = MobileNetV3()
in_channles = model_backbone.out_channels
# 3. 声明FPN网络
model_fpn = DBFPN(in_channels=in_channles, out_channels=256)
# 4. 打印FPN网络
print(model_fpn)
# 5. 计算得到FPN结果输出
outs = model_backbone(fake_inputs)
fpn_outs = model_fpn(outs)
# 6. 打印FPN输出特征形状
print(f"The shape of fpn outs {fpn_outs.shape}")
Head网络
计算文本区域概率图,文本区域阈值图以及文本区域二值图。
import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class DBHead(nn.Layer):
"""
Differentiable Binarization (DB) for text detection:
see https://arxiv.org/abs/1911.08947
args:
params(dict): super parameters for build DB network
"""
def __init__(self, in_channels, k=50, **kwargs):
super(DBHead, self).__init__()
self.k = k
# DBHead详细实现参考 https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/modeling/heads/det_db_head.py
def step_function(self, x, y):
# 可微二值化实现,通过概率图和阈值图计算文本分割二值图
return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
def forward(self, x, targets=None):
shrink_maps = self.binarize(x)
if not self.training:
return {'maps': shrink_maps}
threshold_maps = self.thresh(x)
binary_maps = self.step_function(shrink_maps, threshold_maps)
y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
return {'maps': y}
DB Head网络会在FPN特征的基础上作上采样,将FPN特征由原图的四分之一大小映射到原图大小。
# 1. 从PaddleOCR中imort DBHead
from ppocr.modeling.heads.det_db_head import DBHead
import paddle
# 2. 计算DBFPN网络输出结果
fake_inputs = paddle.randn([1, 3, 640, 640], dtype="float32")
model_backbone = MobileNetV3()
in_channles = model_backbone.out_channels
model_fpn = DBFPN(in_channels=in_channles, out_channels=256)
outs = model_backbone(fake_inputs)
fpn_outs = model_fpn(outs)
# 3. 声明Head网络
model_db_head = DBHead(in_channels=256)
# 4. 打印DBhead网络
print(model_db_head)
# 5. 计算Head网络的输出
db_head_outs = model_db_head(fpn_outs)
print(f"The shape of fpn outs {fpn_outs.shape}")
print(f"The shape of DB head outs {db_head_outs['maps'].shape}")
4 训练DB文字检测模型
PaddleOCR提供DB文本检测算法,支持MobileNetV3、ResNet50_vd两种骨干网络,可以根据需要选择相应的配置文件,启动训练。
本节以icdar15数据集、MobileNetV3作为骨干网络的DB检测模型(即超轻量模型使用的配置)为例,介绍如何完成PaddleOCR中文字检测模型的训练、评估与测试。
3.1 数据准备
本次实验选取了场景文本检测和识别(Scene Text Detection and Recognition)任务最知名和常用的数据集ICDAR2015。
!cd ~/data/data96799/ && tar xf icdar2015.tar
运行上述指令后 ~/train_data/icdar2015/text_localization 有两个文件夹和两个文件,分别是:
~/train_data/icdar2015/text_localization
└─ icdar_c4_train_imgs/ icdar数据集的训练数据
└─ ch4_test_images/ icdar数据集的测试数据
└─ train_icdar2015_label.txt icdar数据集的训练标注
└─ test_icdar2015_label.txt icdar数据集的测试标注
提供的标注文件格式为:
" 图像文件名 json.dumps编码的图像标注信息"
ch4_test_images/img_61.jpg [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]], ...}]
json.dumps编码前的图像标注信息是包含多个字典的list,字典中的points表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。 transcription中的字段表示当前文本框的文字,在文本检测任务中并不需要这个信息。 如果您想在其他数据集上训练PaddleOCR,可以按照上述形式构建标注文件。
如果"transcription"字段的文字为'*'或者'###‘,表示对应的标注可以被忽略掉,因此,如果没有文字标签,可以将transcription字段设置为空字符串。
3.2 数据预处理
训练时对输入图片的格式、大小有一定的要求,同时,还需要根据标注信息获取阈值图以及概率图的真实标签。所以,在数据输入模型前,需要对数据进行预处理操作,使得图片和标签满足网络训练和预测的需要。另外,为了扩大训练数据集、抑制过拟合,提升模型的泛化能力,还需要使用了几种基础的数据增广方法。
本实验的数据预处理共包括如下方法:
- 图像解码:将图像转为Numpy格式;
- 标签编码:解析txt文件中的标签信息,并按统一格式进行保存;
- 基础数据增广:包括:随机水平翻转、随机旋转,随机缩放,随机裁剪等;
- 获取阈值图标签:使用扩张的方式获取算法训练需要的阈值图标签;
- 获取概率图标签:使用收缩的方式获取算法训练需要的概率图标签;
- 归一化:通过规范化手段,把神经网络每层中任意神经元的输入值分布改变成均值为0,方差为1的标准正太分布,使得最优解的寻优过程明显会变得平缓,训练过程更容易收敛;
- 通道变换:图像的数据格式为[H, W, C](即高度、宽度和通道数),而神经网络使用的训练数据的格式为[C, H, W],因此需要对图像数据重新排列,例如[224, 224, 3]变为[3, 224, 224];
图像解码
import sys
import six
import cv2
import numpy as np
# https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/data/imaug/operators.py
class DecodeImage(object):
""" decode image """
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
def __call__(self, data):
img = data['image']
if six.PY2:
assert type(img) is str and len(
img) > 0, "invalid input 'img' in DecodeImage"
else:
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
# 1. 图像解码
img = np.frombuffer(img, dtype='uint8')
img = cv2.imdecode(img, 1)
if img is None:
return None
if self.img_mode == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == 'RGB':
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
# 2. 解码后的图像放在字典中
data['image'] = img
return data
接下来,从训练数据的标注中读取图像,演示DecodeImage类的使用方式。
import json
import cv2
import os
import numpy as np
import matplotlib.pyplot as plt
# 在notebook中使用matplotlib.pyplot绘图时,需要添加该命令进行显示
%matplotlib inline
from PIL import Image
import numpy as np
label_path = "/home/aistudio/data/data96799/icdar2015/text_localization/train_icdar2015_label.txt"
img_dir = "/home/aistudio/data/data96799/icdar2015/text_localization/"
# 1. 读取训练标签的第一条数据
f = open(label_path, "r")
lines = f.readlines()
# 2. 取第一条数据
line = lines[0]
print("The first data in train_icdar2015_label.txt is as follows.\n", line)
img_name, gt_label = line.strip().split("\t")
# 3. 读取图像
image = open(os.path.join(img_dir, img_name), 'rb').read()
data = {'image': image, 'label': gt_label}
声明DecodeImage类,解码图像,并返回一个新的字典data
# 4. 声明DecodeImage类,解码图像
decode_image = DecodeImage(img_mode='RGB', channel_first=False)
data = decode_image(data)
# 5. 打印解码后图像的shape,并可视化图像
print("The shape of decoded image is ", data['image'].shape)
plt.figure(figsize=(10, 10))
plt.imshow(data['image'])
src_img = data['image']
标签编码
解析txt文件中的标签信息,并按统一格式进行保存;
import numpy as np
import string
import json
# 详细实现参考: https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/data/imaug/label_ops.py#L38
class DetLabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
label = data['label']
# 1. 使用json读入标签
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
# 1.1 如果文本标注是*或者###,表示此标注无效
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
if len(boxes) == 0:
return None
boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
# 2. 得到文字、box等信息
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data
运行下述代码观察DetLabelEncode类解码标签前后的对比。
# 从PaddleOCR中import DetLabelEncode
from ppocr.data.imaug.label_ops import DetLabelEncode
# 1. 声明标签解码的类
decode_label = DetLabelEncode()
# 2. 打印解码前的标签
print("The label before decode are: ", data['label'])
# 3. 标签解码
data = decode_label(data)
print("\n")
# 4. 打印解码后的标签
print("The polygon after decode are: ", data['polys'])
print("The text after decode are: ", data['texts'])
基础数据增广
数据增广是提高模型训练精度,增加模型泛化性的常用方法,文本检测常用的数据增广包括随机水平翻转、随机旋转、随机缩放以及随机裁剪等等。
随机水平翻转、随机旋转、随机缩放的代码实现参考代码。随机裁剪的数据增广代码实现参考代码。
获取阈值图标签
使用扩张的方式获取算法训练需要的阈值图标签;
import numpy as np
import cv2
np.seterr(divide='ignore', invalid='ignore')
import pyclipper
from shapely.geometry import Polygon
import sys
import warnings
warnings.simplefilter("ignore")
# 计算文本区域阈值图标签类
# 详细实现代码参考:https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/data/imaug/make_border_map.py
class MakeBorderMap(object):
def __init__(self,
shrink_ratio=0.4,
thresh_min=0.3,
thresh_max=0.7,
**kwargs):
self.shrink_ratio = shrink_ratio
self.thresh_min = thresh_min
self.thresh_max = thresh_max
def __call__(self, data):
img = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
# 1. 生成空模版
canvas = np.zeros(img.shape[:2], dtype=np.float32)
mask = np.zeros(img.shape[:2], dtype=np.float32)
for i in range(len(text_polys)):
if ignore_tags[i]:
continue
# 2. draw_border_map函数根据解码后的box信息计算阈值图标签
self.draw_border_map(text_polys[i], canvas, mask=mask)
canvas = canvas * (self.thresh_max - self.thresh_min) + self.thresh_min
data['threshold_map'] = canvas
data['threshold_mask'] = mask
return data
def draw_border_map(self, polygon, canvas, mask):
polygon = np.array(polygon)
assert polygon.ndim == 2
assert polygon.shape[1] == 2
polygon_shape = Polygon(polygon)
if polygon_shape.area <= 0:
return
# 多边形内缩
distance = polygon_shape.area * (
1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
# 计算mask
padded_polygon = np.array(padding.Execute(distance)[0])
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
xmin = padded_polygon[:, 0].min()
xmax = padded_polygon[:, 0].max()
ymin = padded_polygon[:, 1].min()
ymax = padded_polygon[:, 1].max()
width = xmax - xmin + 1
height = ymax - ymin + 1
polygon[:, 0] = polygon[:, 0] - xmin
polygon[:, 1] = polygon[:, 1] - ymin
xs = np.broadcast_to(
np.linspace(
0, width - 1, num=width).reshape(1, width), (height, width))
ys = np.broadcast_to(
np.linspace(
0, height - 1, num=height).reshape(height, 1), (height, width))
distance_map = np.zeros(
(polygon.shape[0], height, width), dtype=np.float32)
for i in range(polygon.shape[0]):
j = (i + 1) % polygon.shape[0]
# 计算点到线的距离
absolute_distance = self._distance(xs, ys, polygon[i], polygon[j])
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
distance_map = distance_map.min(axis=0)
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height,
xmin_valid - xmin:xmax_valid - xmax + width],
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])
# 从PaddleOCR中import MakeBorderMap
from ppocr.data.imaug.make_border_map import MakeBorderMap
# 1. 声明MakeBorderMap函数
generate_text_border = MakeBorderMap()
# 2. 根据解码后的输入数据计算bordermap信息
data = generate_text_border(data)
# 3. 阈值图可视化
plt.figure(figsize=(10, 10))
plt.imshow(src_img)
text_border_map = data['threshold_map']
plt.figure(figsize=(10, 10))
plt.imshow(text_border_map)
获取概率图标签
使用收缩的方式获取算法训练需要的概率图标签;
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper
# 计算概率图标签
# 详细代码实现参考: https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/data/imaug/make_shrink_map.py
class MakeShrinkMap(object):
r'''
Making binary mask from detection data with ICDAR format.
Typically following the process of class `MakeICDARData`.
'''
def __init__(self, min_text_size=8, shrink_ratio=0.4, **kwargs):
self.min_text_size = min_text_size
self.shrink_ratio = shrink_ratio
def __call__(self, data):
image = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
h, w = image.shape[:2]
# 1. 校验文本检测标签
text_polys, ignore_tags = self.validate_polygons(text_polys,
ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32)
# 2. 根据文本检测框计算文本区域概率图
for i in range(len(text_polys)):
polygon = text_polys[i]
height = max(polygon[:, 1]) - min(polygon[:, 1])
width = max(polygon[:, 0]) - min(polygon[:, 0])
if ignore_tags[i] or min(height, width) < self.min_text_size:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
else:
# 多边形内缩
polygon_shape = Polygon(polygon)
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
shrinked = []
# Increase the shrink ratio every time we get multiple polygon returned back
possible_ratios = np.arange(self.shrink_ratio, 1,
self.shrink_ratio)
np.append(possible_ratios, 1)
# print(possible_ratios)
for ratio in possible_ratios:
# print(f"Change shrink ratio to {ratio}")
distance = polygon_shape.area * (
1 - np.power(ratio, 2)) / polygon_shape.length
shrinked = padding.Execute(-distance)
if len(shrinked) == 1:
break
if shrinked == []:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
continue
# 填充
for each_shrink in shrinked:
shrink = np.array(each_shrink).reshape(-1, 2)
cv2.fillPoly(gt, [shrink.astype(np.int32)], 1)
data['shrink_map'] = gt
data['shrink_mask'] = mask
return data
# 从 PaddleOCR 中 import MakeShrinkMap
from ppocr.data.imaug.make_shrink_map import MakeShrinkMap
# 1. 声明文本概率图标签生成
generate_shrink_map = MakeShrinkMap()
# 2. 根据解码后的标签计算文本区域概率图
data = generate_shrink_map(data)
# 3. 文本区域概率图可视化
plt.figure(figsize=(10, 10))
plt.imshow(src_img)
text_border_map = data['shrink_map']
plt.figure(figsize=(10, 10))
plt.imshow(text_border_map)
归一化
通过规范化手段,把神经网络每层中任意神经元的输入值分布改变成均值为0,方差为1的标准正太分布,使得最优解的寻优过程明显会变得平缓,训练过程更容易收敛;
# 图像归一化类
class NormalizeImage(object):
""" normalize image such as substract mean, divide std
"""
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
if isinstance(scale, str):
scale = eval(scale)
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
# 1. 获得归一化的均值和方差
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, data):
# 2. 从字典中获取图像数据
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img, np.ndarray), "invalid input 'img' in NormalizeImage"
# 3. 图像归一化
data['image'] = (img.astype('float32') * self.scale - self.mean) / self.std
return data
通道变换
图像的数据格式为[H, W, C](即高度、宽度和通道数),而神经网络使用的训练数据的格式为[C, H, W],因此需要对图像数据重新排列,例如[224, 224, 3]变为[3, 224, 224];
# 改变图像的通道顺序,HWC to CHW
class ToCHWImage(object):
""" convert hwc image to chw image
"""
def __init__(self, **kwargs):
pass
def __call__(self, data):
# 1. 从字典中获取图像数据
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
# 2. 通过转置改变图像的通道顺序
data['image'] = img.transpose((2, 0, 1))
return data
# 1. 声明通道变换类
transpose = ToCHWImage()
# 2. 打印变换前的图像
print("The shape of image before transpose", data['image'].shape)
# 3. 图像通道变换
data = transpose(data)
# 4. 打印通向通道变换后的图像
print("The shape of image after transpose", data['image'].shape)
3.3 构建数据读取器
上面的代码仅展示了读取一张图片和预处理的方法,在实际模型训练时,多采用批量数据读取处理的方式。
本节采用PaddlePaddle中的Dataset和DatasetLoader API构建数据读取器。
# dataloader构建详细代码参考:https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/data/simple_dataset.py
import numpy as np
import os
import random
from paddle.io import Dataset
def transform(data, ops=None):
""" transform """
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
def create_operators(op_param_list, global_config=None):
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(op_param_list, list), ('operator config should be a list')
ops = []
for operator in op_param_list:
assert isinstance(operator,
dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
if global_config is not None:
param.update(global_config)
op = eval(op_name)(**param)
ops.append(op)
return ops
class SimpleDataSet(Dataset):
def __init__(self, mode, label_file, data_dir, seed=None):
super(SimpleDataSet, self).__init__()
# 标注文件中,使用'\t'作为分隔符区分图片名称与标签
self.delimiter = '\t'
# 数据集路径
self.data_dir = data_dir
# 随机数种子
self.seed = seed
# 获取所有数据,以列表形式返回
self.data_lines = self.get_image_info_list(label_file)
# 新建列表存放数据索引
self.data_idx_order_list = list(range(len(self.data_lines)))
self.mode = mode
# 如果是训练过程,将数据集进行随机打乱
if self.mode.lower() == "train":
self.shuffle_data_random()
def get_image_info_list(self, label_file):
# 获取标签文件中的所有数据
with open(label_file, "rb") as f:
lines = f.readlines()
return lines
def shuffle_data_random(self):
#随机打乱数据
random.seed(self.seed)
random.shuffle(self.data_lines)
return
def __getitem__(self, idx):
# 1. 获取索引为idx的数据
file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines[file_idx]
try:
# 2. 获取图片名称以及标签
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
label = substr[1]
# 3. 获取图片路径
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
# 4. 读取图片并进行预处理
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
# 5. 完成数据增强操作
outs = transform(data, self.mode.lower())
# 6. 如果当前数据读取失败,重新随机读取一个新数据
except Exception as e:
outs = None
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
# 返回数据集的大小
return len(self.data_idx_order_list)
PaddlePaddle的Dataloader API中可以使用多进程数据读取,并可以自由设置线程数量。多线程数据读取可以加快数据处理速度和模型训练速度,多线程读取实现代码如下:
from paddle.io import Dataset, DataLoader, BatchSampler, DistributedBatchSampler
def build_dataloader(mode, label_file, data_dir, batch_size, drop_last, shuffle, num_workers, seed=None):
# 创建数据读取类
dataset = SimpleDataSet(mode, label_file, data_dir, seed)
# 定义 batch_sampler
batch_sampler = BatchSampler(dataset=dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
# 使用paddle.io.DataLoader创建数据读取器,并设置batchsize,进程数量num_workers等参数
data_loader = DataLoader(dataset=dataset, batch_sampler=batch_sampler, num_workers=num_workers, return_list=True, use_shared_memory=False)
return data_loader
ic15_data_path = "/home/aistudio/data/data96799/icdar2015/text_localization/"
train_data_label = "/home/aistudio/data/data96799/icdar2015/text_localization/train_icdar2015_label.txt"
eval_data_label = "/home/aistudio/data/data96799/icdar2015/text_localization/test_icdar2015_label.txt"
# 定义训练集数据读取器,进程数设置为8
train_dataloader = build_dataloader('Train', train_data_label, ic15_data_path, batch_size=8, drop_last=False, shuffle=True, num_workers=0)
# 定义验证集数据读取器
eval_dataloader = build_dataloader('Eval', eval_data_label, ic15_data_path, batch_size=1, drop_last=False, shuffle=False, num_workers=0)
3.4 DB模型后处理
DB head网络的输出形状和原图相同,实际上DB head网络输出的三个通道特征分别为文本区域的概率图、阈值图和二值图。
在训练阶段,3个预测图与真实标签共同完成损失函数的计算以及模型训练;
在预测阶段,只需要使用概率图即可,DB后处理函数根据概率图中文本区域的响应计算出包围文本响应区域的文本框坐标。
由于网络预测的概率图是经过收缩后的结果,所以在后处理步骤中,使用相同的偏移值将预测的多边形区域进行扩张,即可得到最终的文本框。代码实现如下所示。
# https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/postprocess/db_postprocess.py
import numpy as np
import cv2
import paddle
from shapely.geometry import Polygon
import pyclipper
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
use_dilation=False,
score_mode="fast",
**kwargs):
# 1. 获取后处理超参数
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
self.min_size = 3
self.score_mode = score_mode
assert score_mode in [
"slow", "fast"
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
self.dilation_kernel = None if not use_dilation else np.array(
[[1, 1], [1, 1]])
# DB后处理代码详细实现参考 https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/postprocess/db_postprocess.py
def __call__(self, outs_dict, shape_list):
# 1. 从字典中获取网络预测结果
pred = outs_dict['maps']
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = pred[:, 0, :, :]
# 2. 大于后处理参数阈值self.thresh的
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
# 3. 获取原图的形状和resize比例
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
if self.dilation_kernel is not None:
mask = cv2.dilate(
np.array(segmentation[batch_index]).astype(np.uint8),
self.dilation_kernel)
else:
mask = segmentation[batch_index]
# 4. 使用boxes_from_bitmap函数 完成 从预测的文本概率图中计算得到文本框
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
src_w, src_h)
boxes_batch.append({'points': boxes})
return boxes_batch
可以发现每个单词都有一个蓝色的框包围着。这些蓝色的框即是在DB输出的分割结果上做一些后处理得到的。将如下代码添加到PaddleOCR/ppocr/postprocess/db_postprocess.py的177行,可以可视化DB输出的分割图,分割图的可视化结果保存为图像vis_segmentation.png。
# 1. 下载训练好的模型
!wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
!cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
# 2. 执行文本检测预测得到结果
!python tools/infer_det.py -c configs/det/det_mv3_db.yml \
-o Global.checkpoints=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy \
Global.infer_img=./doc/imgs_en/img_12.jpg
#PostProcess.unclip_ratio=4.0
# 注:有关PostProcess参数和Global参数介绍与使用参考 https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.3/doc/doc_ch/config.md
可视化预测模型预测的文本概率图,以及最终预测文本框结果。
img = Image.open('./output/det_db/det_results/img_12.jpg')
img = np.array(img)
# 画出读取的图片
plt.figure(figsize=(10, 10))
plt.imshow(img)
img = Image.open('./vis_segmentation.png')
img = np.array(img)
# 画出读取的图片
plt.figure(figsize=(10, 10))
plt.imshow(img)
从可视化结果中可以发现DB的输出结果是文本区域的二值图,属于文本区域的响应更高,非文本的背景区域响应值低。DB的后处理即是求这些响应区域的最小包围框,进而得到每个文本区域的坐标。 另外,通过修改后处理参数可以调整文本框的大小,或者过滤检测效果差的文本框。
DB后处理有四个参数,分别是:
- thresh: DBPostProcess中分割图进行二值化的阈值,默认值为0.3
- box_thresh: DBPostProcess中对输出框进行过滤的阈值,低于此阈值的框不会输出
- unclip_ratio: DBPostProcess中对文本框进行放大的比例
- max_candidates: DBPostProcess中输出的最大文本框数量,默认1000
# 3. 增大DB后处理的参数unlip_ratio为4.0,默认为1.5,改变输出的文本框大小,参数执行文本检测预测得到结果
!python tools/infer_det.py -c configs/det/det_mv3_db.yml \
-o Global.checkpoints=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy \
Global.infer_img=./doc/imgs_en/img_12.jpg \
PostProcess.unclip_ratio=4.0
# 注:有关PostProcess参数和Global参数介绍与使用参考 https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/doc/doc_ch/config.md
img = Image.open('./output/det_db/det_results/img_12.jpg')
img = np.array(img)
# 画出读取的图片
plt.figure(figsize=(10, 10))
plt.imshow(img)
img = Image.open('./vis_segmentation.png')
img = np.array(img)
# 画出读取的图片
plt.figure(figsize=(10, 10))
plt.imshow(img)
3.5 损失函数定义
由于训练阶段获取了3个预测图,所以在损失函数中,也需要结合这3个预测图与它们对应的真实标签分别构建3部分损失函数。
from paddle import nn
import paddle
from paddle import nn
import paddle.nn.functional as F
# DB损失函数
# 详细代码实现参考:https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/losses/det_db_loss.py
class DBLoss(nn.Layer):
"""
Differentiable Binarization (DB) Loss Function
args:
param (dict): the super paramter for DB Loss
"""
def __init__(self,
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
**kwargs):
super(DBLoss, self).__init__()
self.alpha = alpha
self.beta = beta
# 声明不同的损失函数
self.dice_loss = DiceLoss(eps=eps)
self.l1_loss = MaskL1Loss(eps=eps)
self.bce_loss = BalanceLoss(
balance_loss=balance_loss,
main_loss_type=main_loss_type,
negative_ratio=ohem_ratio)
def forward(self, predicts, labels):
predict_maps = predicts['maps']
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
1:]
shrink_maps = predict_maps[:, 0, :, :]
threshold_maps = predict_maps[:, 1, :, :]
binary_maps = predict_maps[:, 2, :, :]
# 1. 针对文本预测概率图,使用二值交叉熵损失函数
loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
label_shrink_mask)
# 2. 针对文本预测阈值图使用L1距离损失函数
loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
label_threshold_mask)
# 3. 针对文本预测二值图,使用dice loss损失函数
loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
label_shrink_mask)
# 4. 不同的损失函数乘上不同的权重
loss_shrink_maps = self.alpha * loss_shrink_maps
loss_threshold_maps = self.beta * loss_threshold_maps
loss_all = loss_shrink_maps + loss_threshold_maps \
+ loss_binary_maps
losses = {'loss': loss_all, \
"loss_shrink_maps": loss_shrink_maps, \
"loss_threshold_maps": loss_threshold_maps, \
"loss_binary_maps": loss_binary_maps}
return losses
3.6 评估指标
考虑到DB后处理检测框多种多样,并不是水平的,本次试验中采用简单计算IOU的方式来评测,计算代码参考icdar Challenges 4的文本检测评测方法。
文本检测的计算指标有三个,分别是Precision,Recall和Hmean,三个指标的计算逻辑为:
- 创建[n, m]大小的一个矩阵叫做iouMat,其中n为GT(ground truth)box的个数,m为检测到的框数量;其中n,m为除去了文本标定为###的框数量;
- 在iouMat中,统计IOU大于阈值0.5的个数,将这个值除以gt个数n得到Recall;
- 在iouMat中,统计IOU大于阈值0.5的个数,将这个值除以检测框m的个数得到Precision;
- Hmean的指标计算方式同F1-score的计算方式,公式如下:
# 文本检测metric指标计算方式如下:
# 完整代码参考 https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.4/ppocr/metrics/det_metric.py
if len(gtPols) > 0 and len(detPols) > 0:
outputShape = [len(gtPols), len(detPols)]
# 1. 创建[n, m]大小的矩阵,用于保存计算的IOU
iouMat = np.empty(outputShape)
gtRectMat = np.zeros(len(gtPols), np.int8)
detRectMat = np.zeros(len(detPols), np.int8)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
pG = gtPols[gtNum]
pD = detPols[detNum]
# 2. 计算预测框和GT框之间的IOU
iouMat[gtNum, detNum] = get_intersection_over_union(pD, pG)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
if gtRectMat[gtNum] == 0 and detRectMat[
detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum:
# 2.1 统计IOU大于阈值0.5的个数
if iouMat[gtNum, detNum] > self.iou_constraint:
gtRectMat[gtNum] = 1
detRectMat[detNum] = 1
detMatched += 1
pairs.append({'gt': gtNum, 'det': detNum})
detMatchedNums.append(detNum)
# 3. IOU大于阈值0.5的个数除以GT框的个数numGtcare得到recall
recall = float(detMatched) / numGtCare
# 4. IOU大于阈值0.5的个数除以预测框的个数numDetcare得到precision
precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare
# 5. 通过公式计算得到Hmean指标
hmean = 0 if (precision + recall) == 0 else 2.0 * \
precision * recall / (precision + recall)
3.7 模型训练
完成数据处理,网络定义和损失函数定义后即可开始训练模型了。
训练基于PaddleOCR训练,采用参数配置的形式,参数文件参考链接,网络结构参数如下:
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
# 优化器参数如下:
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
learning_rate: 0.001
regularizer:
name: 'L2'
factor: 0
# 后处理参数如下:
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
!mkdir train_data
!cd train_data && ln -s /home/aistudio/data/data96799/icdar2015 icdar2015
!wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
!python tools/train.py -c configs/det/det_mv3_db.yml
网络训练后的模型默认保存在PaddleOCR/output/db_mv3/目录下,如果想更换保存目录可以在训练时设置参数Global.save_model_dir,比如:
# 设置参数文件里的Global.save_model_dir可以更改模型保存目录
python tools/train.py -c configs/det/det_mv3_db.yml -o Global.save_model_dir="./output/save_db_train/"
3.8 模型评估
训练过程中,默认保存两种模型,一种是latest命名的最新训练的模型,一种是best_accuracy命名的精度最高的模型。接下来使用保存的模型参数评估在测试集上的precision、recall和hmean:
文本检测精度评估代码位于PaddleOCR/ppocr/metrics/det_metric.py中,调用tools/eval.py即可进行对训练好的模型做精度评估。
!python tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./output/db_mv3/best_accuracy
3.9 模型预测¶
训练好模型后,也可以使用保存好的模型,对数据集中的某一张图片或者某个文件夹的图像进行模型推理,观察模型预测效果。
!python tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy Global.infer_img=./doc/imgs_en/img_12.jpg
预测后的图像默认保存在./output/det_db/det_results/
目录下,使用PIL库可视化结果如下:
import matplotlib.pyplot as plt
# 在notebook中使用matplotlib.pyplot绘图时,需要添加该命令进行显示
%matplotlib inline
from PIL import Image
import numpy as np
img = Image.open('./output/det_db/det_results/img_12.jpg')
img = np.array(img)
# 画出读取的图片
plt.figure(figsize=(20, 20))
plt.imshow(img)
更多推荐
所有评论(0)